59 resultados para Effects-Based Approach to Operations
em Universidad Politécnica de Madrid
Resumo:
In the field of detection and monitoring of dynamic objects in quasi-static scenes, background subtraction techniques where background is modeled at pixel-level, although showing very significant limitations, are extensively used. In this work we propose a novel approach to background modeling that operates at region-level in a wavelet based multi-resolution framework. Based on a segmentation of the background, characterization is made for each region independently as a mixture of K Gaussian modes, considering the model of the approximation and detail coefficients at the different wavelet decomposition levels. Background region characterization is updated along time, and the detection of elements of interest is carried out computing the distance between background region models and those of each incoming image in the sequence. The inclusion of the context in the modeling scheme through each region characterization makes the model robust, being able to support not only gradual illumination and long-term changes, but also sudden illumination changes and the presence of strong shadows in the scene
Resumo:
Static analyses of object-oriented programs usually rely on intermediate representations that respect the original semantics while having a more uniform and basic syntax. Most of the work involving object-oriented languages and abstract interpretation usually omits the description of that language or just refers to the Control Flow Graph(CFG) it represents. However, this lack of formalization on one hand results in an absence of assurances regarding the correctness of the transformation and on the other it typically strongly couples the analysis to the source language. In this work we present a framework for analysis of object-oriented languages in which in a first phase we transform the input program into a representation based on Horn clauses. This allows on one hand proving the transformation correct attending to a simple condition and on the other being able to apply an existing analyzer for (constraint) logic programming to automatically derive a safe approximation of the semantics of the original program. The approach is flexible in the sense that the first phase decouples the analyzer from most languagedependent features, and correct because the set of Horn clauses returned by the transformation phase safely approximates the standard semantics of the input program. The resulting analysis is also reasonably scalable due to the use of mature, modular (C)LP-based analyzers. The overall approach allows us to report results for medium-sized programs.
Resumo:
Recent approaches to mobile code safety, like proof- arrying code, involve associating safety information to programs. The code supplier provides a program and also includes with it a certifícate (or proof) whose validity entails compliance with a predefined safety policy. The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eflicient, and automatic than generating the original proof. We herein introduce a novel approach to mobile code safety which follows a similar scheme, but which is based throughout on the use of abstract interpretation techniques. In our framework the safety policy is specified by using an expressive assertion language defined over abstract domains. We identify a particular slice of the abstract interpretation-based static analysis results which is especially useful as a certifícate. We propose an algorithm for checking the validity of the certifícate on the consumer side which is itself in fact a very simplified and eflicient specialized abstract-interpreter. Our ideas are illustrated through an example implemented in the CiaoPP system. Though further experimentation is still required, we believe the proposed approach is of interest for bringing the automation and expressiveness which is inherent in the abstract interpretation techniques to the área of mobile code safety.
Resumo:
Knowledge about the quality characteristics (QoS) of service com- positions is crucial for determining their usability and economic value. Ser- vice quality is usually regulated using Service Level Agreements (SLA). While end-to-end SLAs are well suited for request-reply interactions, more complex, decentralized, multiparticipant compositions (service choreographies) typ- ically involve multiple message exchanges between stateful parties and the corresponding SLAs thus encompass several cooperating parties with interde- pendent QoS. The usual approaches to determining QoS ranges structurally (which are by construction easily composable) are not applicable in this sce- nario. Additionally, the intervening SLAs may depend on the exchanged data. We present an approach to data-aware QoS assurance in choreographies through the automatic derivation of composable QoS models from partici- pant descriptions. Such models are based on a message typing system with size constraints and are derived using abstract interpretation. The models ob- tained have multiple uses including run-time prediction, adaptive participant selection, or design-time compliance checking. We also present an experimen- tal evaluation and discuss the benefits of the proposed approach.
Resumo:
Reproducible research in scientic work ows is often addressed by tracking the provenance of the produced results. While this approach allows inspecting intermediate and nal results, improves understanding, and permits replaying a work ow execution, it does not ensure that the computational environment is available for subsequent executions to reproduce the experiment. In this work, we propose describing the resources involved in the execution of an experiment using a set of semantic vocabularies, so as to conserve the computational environment. We dene a process for documenting the work ow application, management system, and their dependencies based on 4 domain ontologies. We then conduct an experimental evaluation sing a real work ow application on an academic and a public Cloud platform. Results show that our approach can reproduce an equivalent execution environment of a predened virtual machine image on both computing platforms.
Resumo:
Data-related properties of the activities involved in a service composition can be used to facilitate several design-time and run-time adaptation tasks, such as service evolution, distributed enactment, and instance-level adaptation. A number of these properties can be expressed using a notion of sharing. We present an approach for automated inference of data properties based on sharing analysis, which is able to handle service compositions with complex control structures, involving loops and sub-workflows. The properties inferred can include data dependencies, information content, domain-defined attributes, privacy or confidentiality levels, among others. The analysis produces characterizations of the data and the activities in the composition in terms of minimal and maximal sharing, which can then be used to verify compliance of potential adaptation actions, or as supporting information in their generation. This sharing analysis approach can be used both at design time and at run time. In the latter case, the results of analysis can be refined using the composition traces (execution logs) at the point of execution, in order to support run-time adaptation.
Resumo:
Reproducible research in scientific workflows is often addressed by tracking the provenance of the produced results. While this approach allows inspecting intermediate and final results, improves understanding, and permits replaying a workflow execution, it does not ensure that the computational environment is available for subsequent executions to reproduce the experiment. In this work, we propose describing the resources involved in the execution of an experiment using a set of semantic vocabularies, so as to conserve the computational environment. We define a process for documenting the workflow application, management system, and their dependencies based on 4 domain ontologies. We then conduct an experimental evaluation using a real workflow application on an academic and a public Cloud platform. Results show that our approach can reproduce an equivalent execution environment of a predefined virtual machine image on both computing platforms.
Resumo:
La evaluación de ontologías, incluyendo diagnóstico y reparación de las mismas, es una compleja actividad que debe llevarse a cabo en cualquier proyecto de desarrollo ontológico para comprobar la calidad técnica de las ontologías. Sin embargo, existe una gran brecha entre los enfoques metodológicos sobre la evaluación de ontologías y las herramientas que le dan soporte. En particular, no existen enfoques que proporcionen guías concretas sobre cómo diagnosticar y, en consecuencia, reparar ontologías. Esta tesis pretende avanzar en el área de la evaluación de ontologías, concretamente en la actividad de diagnóstico. Los principales objetivos de esta tesis son (a) ayudar a los desarrolladores en el diagnóstico de ontologías para encontrar errores comunes y (b) facilitar dicho diagnóstico reduciendo el esfuerzo empleado proporcionando el soporte tecnológico adecuado. Esta tesis presenta las siguientes contribuciones: • Catálogo de 41 errores comunes que los ingenieros ontológicos pueden cometer durante el desarrollo de ontologías. • Modelo de calidad para el diagnóstico de ontologías alineando el catálogo de errores comunes con modelos de calidad existentes. • Diseño e implementación de 48 métodos para detectar 33 de los 41 errores comunes en el catálogo. • Soporte tecnológico OOPS!, que permite el diagnstico de ontologías de forma (semi)automática. De acuerdo con los comentarios recibidos y los resultados de los test de satisfacción realizados, se puede afirmar que el enfoque desarrollado y presentado en esta tesis ayuda de forma efectiva a los usuarios a mejorar la calidad de sus ontologías. OOPS! ha sido ampliamente aceptado por un gran número de usuarios de formal global y ha sido utilizado alrededor de 3000 veces desde 60 países diferentes. OOPS! se ha integrado en software desarrollado por terceros y ha sido instalado en empresas para ser utilizado tanto durante el desarrollo de ontologías como en actividades de formación. Abstract Ontology evaluation, which includes ontology diagnosis and repair, is a complex activity that should be carried out in every ontology development project, because it checks for the technical quality of the ontology. However, there is an important gap between the methodological work about ontology evaluation and the tools that support such an activity. More precisely, not many approaches provide clear guidance about how to diagnose ontologies and how to repair them accordingly. This thesis aims to advance the current state of the art of ontology evaluation, specifically in the ontology diagnosis activity. The main goals of this thesis are (a) to help ontology engineers to diagnose their ontologies in order to find common pitfalls and (b) to lessen the effort required from them by providing the suitable technological support. This thesis presents the following main contributions: • A catalogue that describes 41 pitfalls that ontology developers might include in their ontologies. • A quality model for ontology diagnose that aligns the pitfall catalogue to existing quality models for semantic technologies. • The design and implementation of 48 methods for detecting 33 out of the 41 pitfalls defined in the catalogue. • A system called OOPS! (OntOlogy Pitfall Scanner!) that allows ontology engineers to (semi)automatically diagnose their ontologies. According to the feedback gathered and satisfaction tests carried out, the approach developed and presented in this thesis effectively helps users to increase the quality of their ontologies. At the time of writing this thesis, OOPS! has been broadly accepted by a high number of users worldwide and has been used around 3000 times from 60 different countries. OOPS! is integrated with third-party software and is locally installed in private enterprises being used both for ontology development activities and training courses.
Resumo:
In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion
Resumo:
This study suggests a theoretical framework for improving the teaching/ learning process of English employed in the Aeronautical discourse that brings together cognitive learning strategies, Genre Analysis and the Contemporary theory of Metaphor (Lakoff and Johnson 1980; Lakoff 1993). It maintains that cognitive strategies such as imagery, deduction, inference and grouping can be enhanced by means of metaphor and genre awareness in the context of content based approach to language learning. A list of image metaphors and conceptual metaphors which comes from the terminological database METACITEC is provided. The metaphorical terms from the area of Aeronautics have been taken from specialised dictionaries and have been categorised according to the conceptual metaphors they respond to, by establishing the source domains and the target domains, as well as the semantic networks found. This information makes reference to the internal mappings underlying the discourse of aeronautics reflected in five aviation accident case studies which are related to accident reports from the National Transportation Safety Board (NTSB) and provides an important source for designing language teaching tasks. La Lingüística Cognitiva y el Análisis del Género han contribuido a la mejora de la enseñanza de segundas lenguas y, en particular, al desarrollo de la competencia lingüística de los alumnos de inglés para fines específicos. Este trabajo pretende perfeccionar los procesos de enseñanza y el aprendizaje del lenguaje empleado en el discurso aeronáutico por medio de la práctica de estrategias cognitivas y prestando atención a la Teoría del análisis del género y a la Teoría contemporánea de la metáfora (Lakoff y Johnson 1980; Lakoff 1993). Con el propósito de crear recursos didácticos en los que se apliquen estrategias metafóricas, se ha elaborado un listado de metáforas de imagen y de metáforas conceptuales proveniente de la base de datos terminológica META-CITEC. Estos términos se han clasificado de acuerdo con las metáforas conceptuales y de imagen existentes en esta área de conocimiento. Para la enseñanza de este lenguaje de especialidad, se proponen las correspondencias y las proyecciones entre el dominio origen y el dominio meta que se han hallado en los informes de accidentes aéreos tomados de la Junta federal de la Seguridad en el Transporte (NTSB)
Resumo:
This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.
Resumo:
This paper addresses the economic impact assessment of the construction of a new road on the regional distribution of jobs. The paper summarizes different existing model approaches considered to assess economic impacts through a literature review. Afterwards, we present the development of a comprehensive approach for analyzing the interaction of new transport infrastructure and the economic impact through an integrated model. This model has been applied to the construction of the motorway A-40 in Spain (497 Km.) which runs across three regions without passing though Madrid City. This may in turn lead to the relocation of labor and capital due to the improvement of accessibility of markets or inputs. The result suggests the existence of direct and indirect effects in other regions derived from the improvement of the transportation infrastructure, and confirms the relevance of road freight transport in some regions. We found that the changes in regional employment are substantial for some regions (increasing or decreasing jobs), but a t the same time negligible in other regions. As a result,the approach provides broad guidance to national governments and other transport-related parties about the impacts of this transport policy.
Resumo:
The purpose of this work is to propose a structure for simulating power systems using behavioral models of nonlinear DC to DC converters implemented through a look-up table of gains. This structure is specially designed for converters whose output impedance depends on the load current level, e.g. quasi-resonant converters. The proposed model is a generic one whose parameters can be obtained by direct measuring the transient response at different operating points. It also includes optional functionalities for modeling converters with current limitation and current sharing in paralleling characteristics. The pusposed structured also allows including aditional characteristics of the DC to DC converter as the efficency as a function of the input voltage and the output current or overvoltage and undervoltage protections. In addition, this proposed model is valid for overdamped and underdamped situations.
Resumo:
Surface tension induced convection in a liquid bridge held between two parallel, coaxial, solid disks is considered. The surface tension gradient is produced by a small temperature gradient parallel Co the undisturbed surface. The study is performed by using a mathematical regular perturbation approach based on a small parameter, e, which measures the deviation of the imposed temperature field from its mean value. The first order velocity field is given by a Stokes-type problem (viscous terms are dominant) with relatively simple boundary conditions. The first order temperature field is that imposed from the end disks on a liquid bridge immersed in a non-conductive fluid. Radiative effects are supposed to be negligible. The second order temperature field, which accounts for convective effects, is split into three components, one due to the bulk motion, and the other two to the distortion of the free surface. The relative importance of these components in terms of the heat transfer to or from the end disks is assessed
Resumo:
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson’s Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson’s patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson’s disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.