7 resultados para Education of elites
em Universidad Politécnica de Madrid
Resumo:
The European Union has been promoting linguistic diversity for many years as one of its main educational goals. This is an element that facilitates student mobility and student exchanges between different universities and countries and enriches the education of young undergraduates. In particular, a higher degree of competence in the English language is becoming essential for engineers, architects and researchers in general, as English has become the lingua franca that opens up horizons to internationalisation and the transfer of knowledge in today’s world. Many experts point to the Integrated Approach to Contents and Foreign Languages System as being an option that has certain benefits over the traditional method of teaching a second language that is exclusively based on specific subjects. This system advocates teaching the different subjects in the syllabus in a language other than one’s mother tongue, without prioritising knowledge of the language over the subject. This was the idea that in the 2009/10 academic year gave rise to the Second Language Integration Programme (SLI Programme) at the Escuela Arquitectura Técnica in the Universidad Politécnica Madrid (EUATM-UPM), just at the beginning of the tuition of the new Building Engineering Degree, which had been adapted to the European Higher Education Area (EHEA) model. This programme is an interdisciplinary initiative for the set of subjects taught during the semester and is coordinated through the Assistant Director Office for Educational Innovation. The SLI Programme has a dual goal; to familiarise students with the specific English terminology of the subject being taught, and at the same time improve their communication skills in English. A total of thirty lecturers are taking part in the teaching of eleven first year subjects and twelve in the second year, with around 120 students who have voluntarily enrolled in a special group in each semester. During the 2010/2011 academic year the degree of acceptance and the results of the SLI Programme have been monitored. Tools have been designed to aid interdisciplinary coordination and to analyse satisfaction, such as coordination records and surveys. The results currently available refer to the first and second year and are divided into specific aspects of the different subjects involved and into general aspects of the ongoing experience.
Resumo:
Multidisciplinary training is widely appreciated in industry and business, and nevertheless usually is not addressed in the early stages of most undergraduate programs. We outline here a multidisciplinary course for undergraduates studying engineering in which mathematics would be the common language, the transverse tool. The goal is motivating students to learn more mathematics and as a result, improve the quality of engineering education. The course would be structured around projects in four branches in engineering: mechanical, electrical, civil and bio-tech. The projects would be chosen among a wide variety of topics in engineering practice selected with the guidance of professional engineers. In these projects mathematics should interact with at least two other basic areas of knowledge in engineering: chemistry, computers science, economics, design or physics.
Resumo:
The art of construction is a risky activity that directly affects the life and physical integrity of persons. Since the approval of Law 31/1995, of November 8, Prevention of Occupational Risks was the first legislation that established the current basis in all sectors and then transposed into Spanish law Directive 92/57/CEE called Royal Decree 1627/1997 of October 24, on minimum safety and health dispositions in construction works, measures have been proposed to develop a mixed body of scientific literature composed of researchers and professionals in the field of occupational safety and health, but even today there is still no clear and firm proposal, showing a lack of awareness in the occupational risk prevention and, therefore, a consolidation of the culture of prevention in society. Therefore, the technicians, who make up the building process, can incur in very high responsibilities, such as: Author of the project, Coordinator of Safety and Health during the preparation of the project and during the execution of works, Site Management: Site Manager. This involves the immediate creation of a general training in prevention for all architects starting when still studying, as well as specific training, appropriate and complementary to all the architects that will be devoted to the specialty of occupational safety and health in construction works. That is, first, we must make the responsible bodies aware of the urgent need to integrate risk prevention in the curricula of architecture and later in the continuing education of the profession. It is necessary that our teaching must conform to the laws on safety and health, due to the fact that the law recognizes our academic degrees and professional qualifications to perform functions in that area
Resumo:
The Reinforcement of Building Structures is one of the topics of the Master in Building Innovation Technology (MBIT) of Universidad Politécnica de Madrid (UPM). Since the beginning of the delivery of this master, case studies have been chosen as the teaching methodology. For the 2011-2012 course the online education of this subject was implemented, instead of the classical learning based on attendance. Through ICT’s (Information and Communication Technologies) students are provided with much more and more selective information than through the classical learning. ICT’s can be used for search, enquiries and reporting. Using the online tools has been proved, through the results obtained and based on the surveys made amongst students, to be a successful experience.
Resumo:
Intensity and volume of training in Artisti Gymnastics are increasing as the sooner athlete's age of incorporation creating some disturbance in them.
Resumo:
According to the PMBOK (Project Management Body of Knowledge), project management is “the application of knowledge, skills, tools, and techniques to project activities to meet the project requirements” [1]. Project Management has proven to be one of the most important disciplines at the moment of determining the success of any project [2][3][4]. Given that many of the activities covered by this discipline can be said that are “horizontal” for any kind of domain, the importance of acknowledge the concepts and practices becomes even more obvious. The specific case of the projects that fall in the domain of Software Engineering are not the exception about the great influence of Project Management for their success. The critical role that this discipline plays in the industry has come to numbers. A report by McKinsey & Co [4] shows that the establishment of programs for the teaching of critical skills of project management can improve the performance of the project in time and costs. As an example of the above, the reports exposes: “One defense organization used these programs to train several waves of project managers and leaders who together administered a portfolio of more than 1,000 capital projects ranging in Project management size from $100,000 to $500 million. Managers who successfully completed the training were able to cut costs on most projects by between 20 and 35 percent. Over time, the organization expects savings of about 15 percent of its entire baseline spending”. In a white paper by the PMI (Project Management Institute) about the value of project management [5], it is stated that: “Leading organizations across sectors and geographic borders have been steadily embracing project management as a way to control spending and improve project results”. According to the research made by the PMI for the paper, after the economical crisis “Executives discovered that adhering to project management methods and strategies reduced risks, cut costs and improved success rates—all vital to surviving the economic crisis”. In every elite company, a proper execution of the project management discipline has become a must. Several members of the software industry have putted effort into achieving ways of assuring high quality results from projects; many standards, best practices, methodologies and other resources have been produced by experts from different fields of expertise. In the industry and the academic community, there is a continuous research on how to teach better software engineering together with project management [4][6]. For the general practices of Project Management the PMI produced a guide of the required knowledge that any project manager should have in their toolbox to lead any kind of project, this guide is called the PMBOK. On the side of best practices 10 and required knowledge for the Software Engineering discipline, the IEEE (Institute of Electrical and Electronics Engineers) developed the SWEBOK (Software Engineering Body of Knowledge) in collaboration with software industry experts and academic researchers, introducing into the guide many of the needed knowledge for a 5-year expertise software engineer [7]. The SWEBOK also covers management from the perspective of a software project. This thesis is developed to provide guidance to practitioners and members of the academic community about project management applied to software engineering. The way used in this thesis to get useful information for practitioners is to take an industry-approved guide for software engineering professionals such as the SWEBOK, and compare the content to what is found in the PMBOK. After comparing the contents of the SWEBOK and the PMBOK, what is found missing in the SWEBOK is used to give recommendations on how to enrich project management skills for a software engineering professional. Recommendations for members of the academic community on the other hand, are given taking into account the GSwE2009 (Graduated Software Engineering 2009) standard [8]. GSwE2009 is often used as a main reference for software engineering master programs [9]. The standard is mostly based on the content of the SWEBOK, plus some contents that are considered to reinforce the education of software engineering. Given the similarities between the SWEBOK and the GSwE2009, the results of comparing SWEBOK and PMBOK are also considered valid to enrich what the GSwE2009 proposes. So in the end the recommendations for practitioners end up being also useful for the academic community and their strategies to teach project management in the context of software engineering.
Resumo:
This paper addresses the historical evolution of, from its inception, to the present day, within the changing context of EHEA and linked to professional competences. The research methodology, although it is mainly a historical document review, expert opinions on university educational planning of university education of forestry engineering in Spain are also included. The results show the evolution of centralized planning, based on technical knowledge transmission to an approach based on competences (technical, contextual and behavioral) focusing on learning for improving employability.