3 resultados para Echinacea (Plants) Therapeutic use

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently put forth a model of a protochlorophyllide (Pchlide) light-harvesting complex operative during angiosperm seedling de-etiolation (Reinbothe, C., Lebedev, N., and Reinbothe, S. (1999) Nature 397, 80–84). This model, which was based on in vitro reconstitution experiments with zinc analogs of Pchlide a and Pchlide b and the two NADPH:protochlorophyllide oxidoreductases (PORs), PORA and PORB, of barley, predicted a 5-fold excess of Pchlide b, relative to Pchlide a, in the prolamellar body of etioplasts. Recent work (Scheumann, V., Klement, H., Helfrich, M., Oster, U., Schoch, S., and Rüdiger, W. (1999) FEBS Lett. 445, 445–448), however, contradicted this model and reported that Pchlide b would not be present in etiolated plants. Here we demonstrate that Pchlide b is an abundant pigment in barley etioplasts but is rather metabolically unstable. It is rapidly converted to Pchlide a by virtue of 7-formyl reductase activity, an enzyme that had previously been implicated in the chlorophyll (Chl) b to Chl a reaction cycle. Our findings suggest that etiolated plants make use of 7-formyl reductase to fine tune the levels of Pchlide b and Pchlidea and thereby may regulate the steady-state level of light-harvesting POR-Pchlide comple

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin film photovoltaic (TF) modules have gained importance in the photovoltaic (PV) market. New PV plants increasingly use TF technologies. In order to have a reliable sample of a PV module population, a huge number of modules must be measured. There is a big variety of materials used in TF technology. Some of these modules are made of amorphous or microcrystalline silicon. Other are made of CIS or CdTe. Not all these materials respond the same under standard test conditions (STC) of power measurement. Power rates of the modules may vary depending on both the extent and the history of sunlight exposure. Thus, it is necessary a testing method adapted to each TF technology. This test must guarantee repeatability of measurements of generated power. This paper shows responses of different commercial TF PV modules to sunlight exposure. Several test procedures were performed in order to find the best methodology to obtain measurements of TF PV modules at STC in the easiest way. A methodology for indoor measurements adapted to these technologies is described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article has been extracted from the results of a thesis entitled “Potential bioelectricity production of the Madrid Community Agricultural Regions based on rye and triticale biomass.” The aim was, first, to quantify the potential of rye (Secale Cereale L.) and triticale ( Triticosecale Aestivum L.) biomass in each of the Madrid Community agricultural regions, and second, to locate the most suitable areas for the installation of power plants using biomass. At least 17,339.9 t d.m. of rye and triticale would be required to satisfy the biomass needs of a 2.2 MW power plant, (considering an efficiency of 21.5%, 8,000 expected operating hours/year and a biomass LCP of 4,060 kcal/kg for both crops), and 2,577 ha would be used (which represent 2.79% of the Madrid Community fallow dry land surface). Biomass yields that could be achieved in Madrid Community using 50% of the fallow dry land surface (46,150 ha representing 5.75% of the Community area), based on rye and triticale crops, are estimated at 84,855, 74,906, 70,109, 50,791, 13,481, and 943 t annually for the Campiña, Vegas, Sur Occidental, Área Metropolitana, Lozoya-Somosierra, and Guadarrama regions. The latter represents a bioelectricity potential of 10.77, 9.5, 8.9, 6.44, 1.71, and 0.12 MW, respectively.