13 resultados para EQUATIONS

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The notion of a differential invariant for systems of second-order differential equations on a manifold M with respect to the group of vertical automorphisms of the projection is de?ned and the Chern connection attached to a SODE allows one to determine a basis for second-order differential invariants of a SODE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a second order in time modified Lagrange--Galerkin (MLG) method for the time dependent incompressible Navier--Stokes equations. The main ingredient of the new method is the scheme proposed to calculate in a more efficient manner the Galerkin projection of the functions transported along the characteristic curves of the transport operator. We present error estimates for velocity and pressure in the framework of mixed finite elements when either the mini-element or the $P2/P1$ Taylor--Hood element are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Involutivity of the Hamilton-Cartan equations of a second-order Lagrangian admitting a first-order Hamiltonian formalism

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods for predicting the shear capacity of FRP shear strengthened RC beams assume the traditional approach of superimposing the contribution of the FRP reinforcing to the contributions from the reinforcing steel and the concrete. These methods become the basis for most guides for the design of externally bonded FRP systems for strengthening concrete structures. The variations among them come from the way they account for the effect of basic shear design parameters on shear capacity. This paper presents a simple method for defining improved equations to calculate the shear capacity of reinforced concrete beams externally shear strengthened with FRP. For the first time, the equations are obtained in a multiobjective optimization framework solved by using genetic algorithms, resulting from considering simultaneously the experimental results of beams with and without FRP external reinforcement. The performance of the new proposed equations is compared to the predictions with some of the current shear design guidelines for strengthening concrete structures using FRPs. The proposed procedure is also reformulated as a constrained optimization problem to provide more conservative shear predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El propósito de esta tesis es la implementación de métodos eficientes de adaptación de mallas basados en ecuaciones adjuntas en el marco de discretizaciones de volúmenes finitos para mallas no estructuradas. La metodología basada en ecuaciones adjuntas optimiza la malla refinándola adecuadamente con el objetivo de mejorar la precisión de cálculo de un funcional de salida dado. El funcional suele ser una magnitud escalar de interés ingenieril obtenida por post-proceso de la solución, como por ejemplo, la resistencia o la sustentación aerodinámica. Usualmente, el método de adaptación adjunta está basado en una estimación a posteriori del error del funcional de salida mediante un promediado del residuo numérico con las variables adjuntas, “Dual Weighted Residual method” (DWR). Estas variables se obtienen de la solución del problema adjunto para el funcional seleccionado. El procedimiento habitual para introducir este método en códigos basados en discretizaciones de volúmenes finitos involucra la utilización de una malla auxiliar embebida obtenida por refinamiento uniforme de la malla inicial. El uso de esta malla implica un aumento significativo de los recursos computacionales (por ejemplo, en casos 3D el aumento de memoria requerida respecto a la que necesita el problema fluido inicial puede llegar a ser de un orden de magnitud). En esta tesis se propone un método alternativo basado en reformular la estimación del error del funcional en una malla auxiliar más basta y utilizar una técnica de estimación del error de truncación, denominada _ -estimation, para estimar los residuos que intervienen en el método DWR. Utilizando esta estimación del error se diseña un algoritmo de adaptación de mallas que conserva los ingredientes básicos de la adaptación adjunta estándar pero con un coste computacional asociado sensiblemente menor. La metodología de adaptación adjunta estándar y la propuesta en la tesis han sido introducidas en un código de volúmenes finitos utilizado habitualmente en la industria aeronáutica Europea. Se ha investigado la influencia de distintos parámetros numéricos que intervienen en el algoritmo. Finalmente, el método propuesto se compara con otras metodologías de adaptación de mallas y su eficiencia computacional se demuestra en una serie de casos representativos de interés aeronáutico. ABSTRACT The purpose of this thesis is the implementation of efficient grid adaptation methods based on the adjoint equations within the framework of finite volume methods (FVM) for unstructured grid solvers. The adjoint-based methodology aims at adapting grids to improve the accuracy of a functional output of interest, as for example, the aerodynamic drag or lift. The adjoint methodology is based on the a posteriori functional error estimation using the adjoint/dual-weighted residual method (DWR). In this method the error in a functional output can be directly related to local residual errors of the primal solution through the adjoint variables. These variables are obtained by solving the corresponding adjoint problem for the chosen functional. The common approach to introduce the DWR method within the FVM framework involves the use of an auxiliary embedded grid. The storage of this mesh demands high computational resources, i.e. over one order of magnitude increase in memory relative to the initial problem for 3D cases. In this thesis, an alternative methodology for adapting the grid is proposed. Specifically, the DWR approach for error estimation is re-formulated on a coarser mesh level using the _ -estimation method to approximate the truncation error. Then, an output-based adaptive algorithm is designed in such way that the basic ingredients of the standard adjoint method are retained but the computational cost is significantly reduced. The standard and the new proposed adjoint-based adaptive methodologies have been incorporated into a flow solver commonly used in the EU aeronautical industry. The influence of different numerical settings has been investigated. The proposed method has been compared against different grid adaptation approaches and the computational efficiency of the new method has been demonstrated on some representative aeronautical test cases.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pressuremeter test in boreholes has proven itself as a useful tool in geotechnical explorations, especially comparing its results with those obtained from a mathematical model ruled by a soil representative constitutive equation. The numerical model shown in this paper is aimed to be the reference framework for the interpretation of this test. The model analyses variables such as: the type of response, the initial state, the drainage regime and the constitutive equations. It is a model of finite elements able to work with a mesh without deformation or one adapted to it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical appearance of granular media suggests the existence of geometrical scale invariance. The paper discuss how this physico-empirical property can be mathematically encoded leading to different generative models: a smooth one encoded by a differential equation and another encoded by an equation coming from a measure theoretical property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electro-dynamical tethers emit waves in structured denominated Alfven wings. The Derivative Nonlineal Schrödinger Equation (DNLS) possesses the capacity to describe the propagation of circularly polarized Alfven waves of finite amplitude in cold plasmas. The DNLS equation is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In this article is presented a theoretical and numerical analysis when the growth rate of the unstable wave is next to zero considering two damping models: Landau and resistive. The DNLS equation presents a chaotic dynamics when is consider only three wave truncation. The evolution to chaos possesses three routes: hard transition, period-doubling and intermittence of type I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for formulating and algorithmically solving the equations of finite element problems is presented. The method starts with a parametric partition of the domain in juxtaposed strips that permits sweeping the whole region by a sequential addition (or removal) of adjacent strips. The solution of the difference equations constructed over that grid proceeds along with the addition removal of strips in a manner resembling the transfer matrix approach, except that different rules of composition that lead to numerically stable algorithms are used for the stiffness matrices of the strips. Dynamic programming and invariant imbedding ideas underlie the construction of such rules of composition. Among other features of interest, the present methodology provides to some extent the analyst's control over the type and quantity of data to be computed. In particular, the one-sweep method presented in Section 9, with no apparent counterpart in standard methods, appears to be very efficient insofar as time and storage is concerned. The paper ends with the presentation of a numerical example

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El principal objetivo de la presente tesis es el de desarrollar y probar un código capaz de resolver las ecuaciones de Maxwell en el dominio del tiempo con Malla Refinada Adaptativa (AMR por sus siglas en inglés). AMR es una técnica de cálculo basada en dividir el dominio físico del problema en distintas mallas rectangulares paralelas a las direcciones cartesianas. Cada una de las mallas tendrá distinta resolución y aquellas con mayor resolución se sitúan allí dónde las ondas electromagnéticas se propagan o interaccionan con los materiales, es decir, dónde mayor precisión es requerida. Como las ondas van desplazándose por todo el dominio, las mayas deberán seguirlas. El principal problema al utilizar esta metodología se puede encontrar en las fronteras internas, dónde las distintas mallas se unen. Ya que el método más corrientemente utilizado para resolver las ecuaciones de Maxwell es el de las diferencias finitas en el dominio del tiempo (FDTD por sus siglas en inglés) , el trabajo comenzó tratando de adaptar AMR a FDTD. Tras descubrirse que esta interacción resultaba en problemas de inestabilidades en las fronteras internas antes citadas, se decidió cambiar a un método basado en volúmenes finitos en el dominio del tiempo (FVTD por sus siglas en inglés). Este se basa en considerar la forma en ecuaciones de conservación de las ecuaciones de Maxwell y aplicar a su resolución un esquema de Godunov. Se ha probado que es clave para el correcto funcionamiento del código la elección de un limitador de flujo que proteja los extremos de la onda de la disipación típica de los métodos de este tipo. Otro problema clásico a la hora de resolver las ecuaciones de Maxwell es el de tratar con las condiciones de frontera física cuando se simulan dominios no acotados, es decir, dónde las ondas deben salir del sistema sin producir ninguna reflexión. Normalmente la solución es la de disponer una banda absorbente en las fronteras físicas. En AMREM se ha desarrollado un nuevo método basado en los campos característicos que con menor requisito de CPU funcina suficientemente bien incluso en los casos más desfaborables. El código ha sido contrastado con soluciones analíticas de diferentes problemas y también su velocidad ha sido comparada con la de Meep, uno de los programas más conocidos del ámbito. También algunas aplicaciones han sido simuladas con el fin de demostrar el amplio espectro de campos en los que AMREM puede funcionar como una útil herramienta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports extensive tests of empirical equations developed by different authors for harbour breakwater overtopping. First, the existing equations are compiled and evaluated as tools for estimating the overtopping rates on sloping and vertical breakwaters. These equations are then tested using the data obtained in a number of laboratory studies performed in the Centre for Harbours and Coastal Studies of the CEDEX, Spain. It was found that the recommended application ranges of the empirical equations typically deviate from those revealed in the experimental tests. In addition, a neural network model developed within the European CLASH Project is tested. The wind effects on overtopping are also assessed using a reduced scale physical model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are described equations for a pair comprising a Riemannian metric and a Killing field on a surface that contain as special cases the Einstein Weyl equations (in the sense of D. Calderbank) and a real version of a special case of the Abelian vortex equations, and it is shown that the property that a metric solve these equations is preserved by the Ricci flow. The equations are solved explicitly, and among the metrics obtained are all steady gradient Ricci solitons (e.g. the cigar soliton) and the sausage metric; there are found other examples of eternal, ancient, and immortal Ricci flows, as well as some Ricci flows with conical singularities.