5 resultados para ENERGY COMPONENT

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper explores the water-energy nexus of Spain and offers calculations for both the energy used in the water sector and the water required to run the energy sector. The article takes a prospective approach, offering evaluations of policy objectives for biofuels and expected renewable energy sources. Approximately 5.8% of total electricity demand in Spain is due to the water sector. Irrigated agriculture is one of the Spanish water sectors that show the largest growth in energy requirements. Searches for more efficient modes of farm water use, urban waste water treatment, and the use of desalinated water must henceforth include the energy component. Furthermore, biofuel production, to the levels targeted for 2020, would have an unbearable impact on the already stressed water resources in Spain. However, growing usage of renewable energy sources is not threatened by water scarcity, but legislative measures in water allocation and water markets will be required to meet the requirements of using these sources. Some of these measures, which are pushed by regional governments, are discussed in concluding sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A review of existing studies about LCA of PV systems has been carried out. The data from this review have been completed with our own figures in order to calculate the Energy Payback Time of double and horizontal axis tracking and fixed systems. The results of this metric span from 2 to 5 years for the latitude and global irradiation ranges of the geographical area comprised between −10◦ to 10◦ of longitude, and 30◦ to 45◦ of latitude. With the caution due to the uncertainty of the sources of information, these results mean that a GCPVS is able to produce back the energy required for its existence from 6 to 15 times during a life cycle of 30 years. When comparing tracking and fixed systems, the great importance of the PV generator makes advisable to dedicate more energy to some components of the system in order to increase the productivity and to obtain a higher performance of the component with the highest energy requirement. Both double axis and horizontal axis trackers follow this way, requiring more energy in metallic structure, foundations and wiring, but this higher contribution is widely compensated by the improved productivity of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution to global energy consumption of the information and communications technology (ICT) sector has increased considerably in the last decade, along with its growing relevance to the overall economy. This trend will continue due to the seemingly ever greater use of these technologies, with broadband data traffic generated by the usage of telecommunication networks as a primary component. In fact, in response to user demand, the telecommunications industry is initiating the deployment of next generation networks (NGNs). However, energy consumption is mostly absent from the debate on these deployments, in spite of the potential impact on both expenses and sustainability. In addition, consumers are unaware of the energy impact of their choices in ultra-broadband services. This paper focuses on forecasting energy consumption in the access part of NGNs by modelling the combined effect of the deployment of two different ultra-broadband technologies (FTTH-GPON and LTE), the evolution of traffic per user, and the energy consumption in each of the networks and user devices. Conclusions are presented on the levels of energy consumption, their cost and the impact of different network design parameters. The effect of technological developments, techno-economic and policy decisions on energy consumption is highlighted. On the consumer side, practical figures and comparisons across technologies are provided. Although the paper focuses on Spain, the analysis can be extended to similar countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reducing the energy consumption for computation and cooling in servers is a major challenge considering the data center energy costs today. To ensure energy-efficient operation of servers in data centers, the relationship among computa- tional power, temperature, leakage, and cooling power needs to be analyzed. By means of an innovative setup that enables monitoring and controlling the computing and cooling power consumption separately on a commercial enterprise server, this paper studies temperature-leakage-energy tradeoffs, obtaining an empirical model for the leakage component. Using this model, we design a controller that continuously seeks and settles at the optimal fan speed to minimize the energy consumption for a given workload. We run a customized dynamic load-synthesis tool to stress the system. Our proposed cooling controller achieves up to 9% energy savings and 30W reduction in peak power in comparison to the default cooling control scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology is presented to determine both the short-term and the long-term influence of the spectral variations on the performance of Multi-Junction (MJ) solar cells and Concentrating "This is the peer reviewed version of the following article: R. Núñez, C. Domínguez, S. Askins, M. Victoria, R. Herrero, I. Antón, and G. Sala, “Determination of spectral variations by means of component cells useful for CPV rating and design,” Prog. Photovolt: Res. Appl., 2015., which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/pip.2715/full. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving [http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms]." Photovoltaic (CPV) modules. Component cells with the same optical behavior as MJ solar cells are used to characterize the spectrum. A set of parameters, namely Spectral Matching Ratios (SMRs), is used to characterize spectrally a particular Direct Normal Irradiance (DNI) by comparison to the reference spectrum (AM1.5D-ASTM-G173-03). Furthermore, the spectrally corrected DNI for a given MJ solar cell technology is defined providing a way to estimate the losses associated to the spectral variations. The last section analyzes how the spectrum evolves throughout a year in a given place and the set of SMRs representative for that location are calculated. This information can be used to maximize the energy harvested by the MJ solar cell throughout the year. As an example, three years of data recorded in Madrid shows that losses lower than 5% are expected due to current mismatch for state-of-the-art MJ solar cells.