14 resultados para EEG, Tilt, Zero gravity, Weightlessness, Brain hemodynamics
em Universidad Politécnica de Madrid
Resumo:
Phase changing flows are being considered for thermal management in space platforms. The resulting flow patterns are very complicated and extremely sensitive to gravity action. Concerning fluid flow in ducts, the available evidence indicates that although the pressure loss does not depend too much on the fluid flow pattern,the heat transfer (and resulting phase change) does. A simple exercise to illustrate this point is presented in this paper. It deals with condensing flow in straight circular cross-sectional ducts. Two extreme configurations are considered here, one corresponds to a stratified flow and the other to an annular flow. Both types of flow patterns have been extensively considered in the past and from this point of view almost nothing is new in the paper, but past results look conflictive and this could be due to the limitations and computational intricacies of the models used. Thus the problem has been reformulated from the onset and the results are presented as the evolution of the vapor quality (vapor to total mass flow rate) along the duct, in typical cases. The results presented here indicate that within the validity of the present models and the assumed ranges of mass flow rate, duct diameter, thermal conditions and fluid characteristics,the length of the ducts required to achieve complete condensation under zero gravity are an order of magnitude larger than in horizontal tubes under normal terrestrial conditions.
Resumo:
The ability to reproduce reduced gravity conditions for long periods is one of the reasons why the orbiting laboratory is so attractive. In this paper several fluid dynamics problem areas are reviewed in which zero-gravity conditions are of great importance. Although emphasis is placed on space processing, there are some older problems also in which gravity masks the phenomcna, impeding a reasonably simple approach to the solution. Three problems are considered: Thermal convection under reduced gravity. The dumping effect ofsurface gravity waves at the outset of convection induced by surface tractions is discussed in particular. The existence of convection is of concern for some satellite thermal control techniques presently used, and for most of the proposed manufacturing processes. Whereas convection should be normally avoided, problems related to the containerless stirring ofa melt constitute an exception. Secondly, gravity and chemical reactions. Although chemical reactions are independent of gravity because of the small mass of the molecules and atoms involved, in many cases the reaction rate dcpends on the arrival of the species to the reaction zone. When the arrival process is buoyancy-controlled, the net specd of the reaction will be affected by the gravity. Thirdly, two-phase flows under reduced gravity provkle interesting problems from boiling heat transfer to degasslng of melts. This part of the paper deals only with the measurement of sound veiocity in a liquid containing bubbles. It is suggested that such measurements should be mude under reduced gravity to provide reliable residís.
Resumo:
Fixation-off sensitivity (FOS) denotes the forms of EEG abnormalities, which are elicited by elimination of central vision or fixation. The phenomenon seems to depend on variables that modulate the alpha rhythm, however, the cerebral mechanisms underlying FOS remain unclear [1]. The scarce previous fMRI findings related to FOS have shown activation in extrastriate cortex [2] and also in frontal areas [3][4]. On the other hand, simultaneous EEG-fMRI technique has been used to assess the relationship between spontaneous power fluctuations of electrical rhythms and associated fMRI signal modulations. These studies have identified that lateral frontoparietal networks show a negative correlation with alpha band in healthy subjects. This neuroanatomical pattern is related to attentional processes and cognitive resources. Moreover, a sub-beta band (17-23 Hz) has been identified with posterior cingulate, temporoparietal junction and dorso-medial prefrontal cortex activations, which correspond to the DMN [5][6].
Resumo:
En el mundo actual las aplicaciones basadas en sistemas biométricos, es decir, aquellas que miden las señales eléctricas de nuestro organismo, están creciendo a un gran ritmo. Todos estos sistemas incorporan sensores biomédicos, que ayudan a los usuarios a controlar mejor diferentes aspectos de la rutina diaria, como podría ser llevar un seguimiento detallado de una rutina deportiva, o de la calidad de los alimentos que ingerimos. Entre estos sistemas biométricos, los que se basan en la interpretación de las señales cerebrales, mediante ensayos de electroencefalografía o EEG están cogiendo cada vez más fuerza para el futuro, aunque están todavía en una situación bastante incipiente, debido a la elevada complejidad del cerebro humano, muy desconocido para los científicos hasta el siglo XXI. Por estas razones, los dispositivos que utilizan la interfaz cerebro-máquina, también conocida como BCI (Brain Computer Interface), están cogiendo cada vez más popularidad. El funcionamiento de un sistema BCI consiste en la captación de las ondas cerebrales de un sujeto para después procesarlas e intentar obtener una representación de una acción o de un pensamiento del individuo. Estos pensamientos, correctamente interpretados, son posteriormente usados para llevar a cabo una acción. Ejemplos de aplicación de sistemas BCI podrían ser mover el motor de una silla de ruedas eléctrica cuando el sujeto realice, por ejemplo, la acción de cerrar un puño, o abrir la cerradura de tu propia casa usando un patrón cerebral propio. Los sistemas de procesamiento de datos están evolucionando muy rápido con el paso del tiempo. Los principales motivos son la alta velocidad de procesamiento y el bajo consumo energético de las FPGAs (Field Programmable Gate Array). Además, las FPGAs cuentan con una arquitectura reconfigurable, lo que las hace más versátiles y potentes que otras unidades de procesamiento como las CPUs o las GPUs.En el CEI (Centro de Electrónica Industrial), donde se lleva a cabo este TFG, se dispone de experiencia en el diseño de sistemas reconfigurables en FPGAs. Este TFG es el segundo de una línea de proyectos en la cual se busca obtener un sistema capaz de procesar correctamente señales cerebrales, para llegar a un patrón común que nos permita actuar en consecuencia. Más concretamente, se busca detectar cuando una persona está quedándose dormida a través de la captación de unas ondas cerebrales, conocidas como ondas alfa, cuya frecuencia está acotada entre los 8 y los 13 Hz. Estas ondas, que aparecen cuando cerramos los ojos y dejamos la mente en blanco, representan un estado de relajación mental. Por tanto, este proyecto comienza como inicio de un sistema global de BCI, el cual servirá como primera toma de contacto con el procesamiento de las ondas cerebrales, para el posterior uso de hardware reconfigurable sobre el cual se implementarán los algoritmos evolutivos. Por ello se vuelve necesario desarrollar un sistema de procesamiento de datos en una FPGA. Estos datos se procesan siguiendo la metodología de procesamiento digital de señales, y en este caso se realiza un análisis de la frecuencia utilizando la transformada rápida de Fourier, o FFT. Una vez desarrollado el sistema de procesamiento de los datos, se integra con otro sistema que se encarga de captar los datos recogidos por un ADC (Analog to Digital Converter), conocido como ADS1299. Este ADC está especialmente diseñado para captar potenciales del cerebro humano. De esta forma, el sistema final capta los datos mediante el ADS1299, y los envía a la FPGA que se encarga de procesarlos. La interpretación es realizada por los usuarios que analizan posteriormente los datos procesados. Para el desarrollo del sistema de procesamiento de los datos, se dispone primariamente de dos plataformas de estudio, a partir de las cuales se captarán los datos para después realizar el procesamiento: 1. La primera consiste en una herramienta comercial desarrollada y distribuida por OpenBCI, proyecto que se dedica a la venta de hardware para la realización de EEG, así como otros ensayos. Esta herramienta está formada por un microprocesador, un módulo de memoria SD para el almacenamiento de datos, y un módulo de comunicación inalámbrica que transmite los datos por Bluetooth. Además cuenta con el mencionado ADC ADS1299. Esta plataforma ofrece una interfaz gráfica que sirve para realizar la investigación previa al diseño del sistema de procesamiento, al permitir tener una primera toma de contacto con el sistema. 2. La segunda plataforma consiste en un kit de evaluación para el ADS1299, desde la cual se pueden acceder a los diferentes puertos de control a través de los pines de comunicación del ADC. Esta plataforma se conectará con la FPGA en el sistema integrado. Para entender cómo funcionan las ondas más simples del cerebro, así como saber cuáles son los requisitos mínimos en el análisis de ondas EEG se realizaron diferentes consultas con el Dr Ceferino Maestu, neurofisiólogo del Centro de Tecnología Biomédica (CTB) de la UPM. Él se encargó de introducirnos en los distintos procedimientos en el análisis de ondas en electroencefalogramas, así como la forma en que se deben de colocar los electrodos en el cráneo. Para terminar con la investigación previa, se realiza en MATLAB un primer modelo de procesamiento de los datos. Una característica muy importante de las ondas cerebrales es la aleatoriedad de las mismas, de forma que el análisis en el dominio del tiempo se vuelve muy complejo. Por ello, el paso más importante en el procesamiento de los datos es el paso del dominio temporal al dominio de la frecuencia, mediante la aplicación de la transformada rápida de Fourier o FFT (Fast Fourier Transform), donde se pueden analizar con mayor precisión los datos recogidos. El modelo desarrollado en MATLAB se utiliza para obtener los primeros resultados del sistema de procesamiento, el cual sigue los siguientes pasos. 1. Se captan los datos desde los electrodos y se escriben en una tabla de datos. 2. Se leen los datos de la tabla. 3. Se elige el tamaño temporal de la muestra a procesar. 4. Se aplica una ventana para evitar las discontinuidades al principio y al final del bloque analizado. 5. Se completa la muestra a convertir con con zero-padding en el dominio del tiempo. 6. Se aplica la FFT al bloque analizado con ventana y zero-padding. 7. Los resultados se llevan a una gráfica para ser analizados. Llegados a este punto, se observa que la captación de ondas alfas resulta muy viable. Aunque es cierto que se presentan ciertos problemas a la hora de interpretar los datos debido a la baja resolución temporal de la plataforma de OpenBCI, este es un problema que se soluciona en el modelo desarrollado, al permitir el kit de evaluación (sistema de captación de datos) actuar sobre la velocidad de captación de los datos, es decir la frecuencia de muestreo, lo que afectará directamente a esta precisión. Una vez llevado a cabo el primer procesamiento y su posterior análisis de los resultados obtenidos, se procede a realizar un modelo en Hardware que siga los mismos pasos que el desarrollado en MATLAB, en la medida que esto sea útil y viable. Para ello se utiliza el programa XPS (Xilinx Platform Studio) contenido en la herramienta EDK (Embedded Development Kit), que nos permite diseñar un sistema embebido. Este sistema cuenta con: Un microprocesador de tipo soft-core llamado MicroBlaze, que se encarga de gestionar y controlar todo el sistema; Un bloque FFT que se encarga de realizar la transformada rápida Fourier; Cuatro bloques de memoria BRAM, donde se almacenan los datos de entrada y salida del bloque FFT y un multiplicador para aplicar la ventana a los datos de entrada al bloque FFT; Un bus PLB, que consiste en un bus de control que se encarga de comunicar el MicroBlaze con los diferentes elementos del sistema. Tras el diseño Hardware se procede al diseño Software utilizando la herramienta SDK(Software Development Kit).También en esta etapa se integra el sistema de captación de datos, el cual se controla mayoritariamente desde el MicroBlaze. Por tanto, desde este entorno se programa el MicroBlaze para gestionar el Hardware que se ha generado. A través del Software se gestiona la comunicación entre ambos sistemas, el de captación y el de procesamiento de los datos. También se realiza la carga de los datos de la ventana a aplicar en la memoria correspondiente. En las primeras etapas de desarrollo del sistema, se comienza con el testeo del bloque FFT, para poder comprobar el funcionamiento del mismo en Hardware. Para este primer ensayo, se carga en la BRAM los datos de entrada al bloque FFT y en otra BRAM los datos de la ventana aplicada. Los datos procesados saldrán a dos BRAM, una para almacenar los valores reales de la transformada y otra para los imaginarios. Tras comprobar el correcto funcionamiento del bloque FFT, se integra junto al sistema de adquisición de datos. Posteriormente se procede a realizar un ensayo de EEG real, para captar ondas alfa. Por otro lado, y para validar el uso de las FPGAs como unidades ideales de procesamiento, se realiza una medición del tiempo que tarda el bloque FFT en realizar la transformada. Este tiempo se compara con el tiempo que tarda MATLAB en realizar la misma transformada a los mismos datos. Esto significa que el sistema desarrollado en Hardware realiza la transformada rápida de Fourier 27 veces más rápido que lo que tarda MATLAB, por lo que se puede ver aquí la gran ventaja competitiva del Hardware en lo que a tiempos de ejecución se refiere. En lo que al aspecto didáctico se refiere, este TFG engloba diferentes campos. En el campo de la electrónica: Se han mejorado los conocimientos en MATLAB, así como diferentes herramientas que ofrece como FDATool (Filter Design Analysis Tool). Se han adquirido conocimientos de técnicas de procesado de señal, y en particular, de análisis espectral. Se han mejorado los conocimientos en VHDL, así como su uso en el entorno ISE de Xilinx. Se han reforzado los conocimientos en C mediante la programación del MicroBlaze para el control del sistema. Se ha aprendido a crear sistemas embebidos usando el entorno de desarrollo de Xilinx usando la herramienta EDK (Embedded Development Kit). En el campo de la neurología, se ha aprendido a realizar ensayos EEG, así como a analizar e interpretar los resultados mostrados en el mismo. En cuanto al impacto social, los sistemas BCI afectan a muchos sectores, donde destaca el volumen de personas con discapacidades físicas, para los cuales, este sistema implica una oportunidad de aumentar su autonomía en el día a día. También otro sector importante es el sector de la investigación médica, donde los sistemas BCIs son aplicables en muchas aplicaciones como, por ejemplo, la detección y estudio de enfermedades cognitivas.
Resumo:
The electroencephalograph (EEG) signal is one of the most widely used signals in the biomedicine field due to its rich information about human tasks. This research study describes a new approach based on i) build reference models from a set of time series, based on the analysis of the events that they contain, is suitable for domains where the relevant information is concentrated in specific regions of the time series, known as events. In order to deal with events, each event is characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time- that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. The performance of the model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals.
Resumo:
When two pure tones of slightly different frequency are presented separately to each ear, the listener perceives a third single tone with amplitude variations at a frequency that equals the difference between the two tones, this perceptual illusion is known as binaural auditory beat. There are anecdotal reports that suggest that the binaural beat can entrain EEG activity and may affect the arousal levels, although few studies have been published. There is a need for double-blind, well-designed studies in order to establish a solid foundation for these sounds, as most of the documented benefits come from self-reported cases that could be affected by placebo effect. As BB’s are a cheap technology (it even exists a free open source programmable bin aural-beat generator on the internet named Gnaural), any achievement in this area could be of public interest. The aim in our research was to explore the potential of BB’s in a particular field: tasks that require focus and concentration. In order to detect changes in the brain waves that could relate to any particular improvement, EEG recordings of a small sample of individuals were also obtained. In this study we compare the effect of different binaural stimulation in 7 EEG frequency ranges, 78 participants were exposed to 20 min binaural beat stimulation. The effects were obtained both qualitative with cognitive test and quantitative with EEG analysis. Results suggest no significant statistical improvement in 20 min stimulation.
Resumo:
Fixation-off sensitivity (FOS) denotes the forms of epilepsy elicited by elimination of fixation. FOS-IGE patients are rare cases [1]. In a previous work [2] we showed that two FOS-IGE patients had different altered EEG rhythms when closing eyes; only beta band was altered in patient 1 while theta, alpha and beta were altered in patient 2. In the present work, we explain the relationship between the altered brain rhythms in these patients and the disruption in functional brain networks.
Resumo:
Some similarities between ion waves in plasmas and gravity waves in incompressible fluids are investigated. It is shown that for zero ion temperature the ion-wave dispersion relation is similar to that of gravity waves in a stratified liquid between rigid, horizontal walls; for large wavelength the ion waves behave as the surface gravity waves of shallow-water theory. The general character of the pattern of ion waves arising in steady plasma flows is analyzed for arbitrary ion temperature, wavelength, and acoustic mach number (which is based on the ion-acoustic speed), and is compared to the pattern of surface gravity waves in steady water flows when surface tension is taken into account.
Resumo:
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ‘traditional’ set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
Resumo:
When two pure tones of slightly different frequency are presented separately to each ear, the listener perceives a third single tone with amplitude variations at a frequency that equals the difference between the two tones; this perceptual illusion is known as the binaural auditory beat (BB). There are anecdotal reports that suggest that the binaural beat can entrain EEG activity and may affect the arousal levels, although few studies have been published. There is a need for double-blind, well-designed studies in order to establish a solid foundation for these sounds, as most of the documented benefits come from self-reported cases that could be affected by placebo effect. As BBs are a cheap technology (it even exists a free open source programmable binaural- beat generator on the Internet named Gnaural), any achievement in this area could be of public interest. The aim in our research was to explore the potential of BBs in a particular field: tasks that require focus and concentration. In order to detect changes in the brain waves that could relate to any particular improvement, EEG recordings of a small sample of individuals were also obtained. In this study we compare the effect of different binaural stimulation in 7 EEG frequency ranges. 78 participants were exposed to 20-min binaural beat stimulation. The effects were obtained both quali- tative with cognitive test and quantitative with EEG analysis. Results suggest no significant statistical improvement in 20-min stimulation.
Resumo:
Various systems for measuring propellant content in spacecrafts under weightlessness conditions are reviewed. The cavity resonator method is found to be the most suitable measurement; technique. This method is analyzed in detail. A determination of errors intrinsec to the method is carried out.
Resumo:
Studies of patients with temporal lobe epilepsy provide few descriptions of seizures that arise in the temporopolar and the anterior temporobasal brain region. Based on connectivity, it might be assumed that the semiology of these seizures is similar to that of medial temporal lobe epilepsy. However, accumulating evidence suggests that the anterior temporobasal cortex may play an important role in the language system, which could account for particular features of seizures arising here. We studied the electroclinical features of seizures in patients with circumscribed temporopolar and temporobasal lesions in order to identify specific features that might differentiate them from seizures that originate in other temporal areas. Among 172 patients with temporal lobe seizures registered in our epilepsy unit in the last 15 years, 15 (8.7%) patients had seizures caused by temporopolar or anterior temporobasal lesions (11 left-sided lesions). The main finding in our study is that patients with left-sided lesions had aphasia during their seizures as the most prominent feature. In addition, while all patients showed normal to high intellectual functioning in standard neuropsychological testing, semantic impairment was found in a subset of 9 patients with left-sided lesions. This case series demonstrates that aphasic seizures without impairment of consciousness can result from small, circumscribed left anterior temporobasal and temporopolar lesions. Thus, the presence of speech manifestation during seizures should prompt detailed assessment of the structural integrity of the basal surface of the temporal lobe in addition to the evaluation of primary language areas.
Resumo:
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ?traditional? set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified, easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
Resumo:
In this work, we present a study whose objective is to prove the influence of background noise produced inside university facilities on the brain waves related to attention processes. Recordings of background noise were carried out in study areas inside university facilities. Volunteers were asked to perform an attention test without any background noise but also while being exposed to the sound recordings, and their cerebral activity was recorded through electroencephalography (EEG). After the application of the test in both conditions, changes in the frequency bands related to attention processes (beta 13-30 Hz and theta 4-7 Hz) were studied. The results of this study show that when the students were performing the test while being exposed to background noise, both beta and theta frequency bands decreased statistically significantly. Because attentional improvement is related to increases of the beta and theta waves, we believe that those decreases are directly related to a lack of attention caused by the exposure to background noise. Nevertheless, the results do not allow us to conclude that background noise produced inside university facilities has an influence on the attentional processes.