4 resultados para Dynamic storage allocation (Computer science)
em Universidad Politécnica de Madrid
Resumo:
This paper analyzes the relationship among research collaboration, number of documents and number of citations of computer science research activity. It analyzes the number of documents and citations and how they vary by number of authors. They are also analyzed (according to author set cardinality) under different circumstances, that is, when documents are written in different types of collaboration, when documents are published in different document types, when documents are published in different computer science subdisciplines, and, finally, when documents are published by journals with different impact factor quartiles. To investigate the above relationships, this paper analyzes the publications listed in the Web of Science and produced by active Spanish university professors between 2000 and 2009, working in the computer science field. Analyzing all documents, we show that the highest percentage of documents are published by three authors, whereas single-authored documents account for the lowest percentage. By number of citations, there is no positive association between the author cardinality and citation impact. Statistical tests show that documents written by two authors receive more citations per document and year than documents published by more authors. In contrast, results do not show statistically significant differences between documents published by two authors and one author. The research findings suggest that international collaboration results on average in publications with higher citation rates than national and institutional collaborations. We also find differences regarding citation rates between journals and conferences, across different computer science subdisciplines and journal quartiles as expected. Finally, our impression is that the collaborative level (number of authors per document) will increase in the coming years, and documents published by three or four authors will be the trend in computer science literature.
Resumo:
The present work is focused on studying two issues: the “teamwork” generic competence and the “academic motivation”. Currently the professional profile of engineers has a strong component of teamwork. On the other hand, motivational profile of students determines their tendencies when they come to work in team, as well as their performance at work. In this context we suggest four hypotheses: (H1) students improve their teamwork capacity by specific training and carrying out a set of activities integrated into an active learning process; (H2) students with higher mastery motivation have better attitude towards team working; (H3) students with higher mastery motivation obtain better results in academic performance; and (H4) students show different motivation profiles in different circumstances: type of courses, teaching methodologies, different times of the learning process. This study was carried out with computer science engineering students from two Spanish universities. The first results point to an improvement in teamwork competence of students if they have previously received specific training in facets of that competence. Other results indicate that there is a correlation between the motivational profiles of students and their perception about teamwork competence. Finally, and contrary to the initial hypothesis, these profiles appear to not influence significantly the academic performance of students.
Resumo:
The present work is aimed at discussing several issues related to the teamwork generic competence, motivational profiles and academic performance. In particular, we study the improvement of teamwork attitude, the predominant types of motivation in different contexts and some correlations among these three components of the learning process. The above-mentioned aspects are of great importance. Currently, the professional profile of engineers has a strong teamwork component and the motivational profile of students determines both their tendencies when they come to work as part of a team, as well as their performance at work. Taking these issues into consideration, we suggest four hypotheses: (H1) students improve their teamwork capacity through specific training and carrying out of a set of activities integrated into an active learning process; (H2) students with higher mastery motivation have a better attitude towards teamwork; (H3) students with different types of motivations reach different levels of academic performance; and (H4) students show different motivation profiles in different circumstances: type of courses, teaching methodologies, different times of the learning process. This study was carried out with Computer Science Engineering students from two Spanish universities. The first results point to an improvement in teamwork competence of students if they have previously received specific training in facets of that competence. Other results indicate that there is a correlation between the motivational profiles of students and their perception of teamwork competence. Finally, results point to a clear relationship between some kind of motivation and academic performance. In particular, four kinds of motivation are analyzed and students are classified into two groups according to them. After analyzing several marks obtained in compulsory courses, we perceive that those students that show higher motivation for avoiding failure obtain, in general, worse academic performance.
Resumo:
In this paper, we study a robot swarm that has to perform task allocation in an environment that features periodic properties. In this environment, tasks appear in different areas following periodic temporal patterns. The swarm has to reallocate its workforce periodically, performing a temporal task allocation that must be synchronized with the environment to be effective. We tackle temporal task allocation using methods and concepts that we borrow from the signal processing literature. In particular, we propose a distributed temporal task allocation algorithm that synchronizes robots of the swarm with the environment and with each other. In this algorithm, robots use only local information and a simple visual communication protocol based on light blinking. Our results show that a robot swarm that uses the proposed temporal task allocation algorithm performs considerably more tasks than a swarm that uses a greedy algorithm.