61 resultados para Dynamic modulus of elasticity
em Universidad Politécnica de Madrid
Resumo:
This study includes an analysis of the applicability of current models used for estimating the mechanical properties of conventional concrete to self-compacting concrete. The mechanical properties evaluated are: modulus of elasticity, tensile strength, and modulus of rupture. An extensive database which included the dosifications and the mechanical properties of 627 mixtures from 138 different references, was used. The models considered are: ACI, EC-2, NZS 3101:2006 (New Zealand code) and the CSA A23.3-04 (Canadian code). The precision in estimating the modulus of elasticity and tensile strength is acceptable for all models; however, all models are less precise in estimating the modulus of rupture.
Resumo:
El objetivo principal de este trabajo de investigación es estudiar las posibilidades de utilización del árido reciclado mixto para un hormigón reciclado en aplicaciones no estructurales, justificando mediante la experimentación la validez para esta aplicación, tanto del árido reciclado como del hormigón reciclado. Esta tesis se centró en los aspectos más restrictivos y limitativos en la utilización de los áridos mixtos en hormigón reciclado, basándose tanto en la normativa internacional existente como en los resultados obtenidos en los estudios bibliográficos consultados. La primera tarea realizada fue la caracterización completa de las propiedades del árido reciclado mixto, recogiendo especialmente los siguientes aspectos: granulometría, contenido de finos, absorción y densidades, composición del árido reciclado, índice de lajas, coeficiente de Los Ángeles, partículas ligeras y contenido de sulfatos. De este estudio de los áridos reciclados, se han destacado relaciones entre las propiedades. Las diferentes correlaciones permiten proponer criterios de calidad de un árido reciclado mixto para un hormigón reciclado. Se ha elegido un árido reciclado mixto entre los estudiados, de características límite admisibles, para obtener resultados conservadores sobre el hormigón reciclado fabricado con él. En una segunda etapa, se ha realizado un estudio de dosificación completo del hormigón reciclado, evaluando la consistencia del hormigón en estado fresco y la resistencia a compresión del hormigón en estado endurecido y se ha comparado con las mismas propiedades de un hormigón convencional. Se ha analizado la capacidad de absorción del árido conseguida con los métodos de presaturación empleados y en función de su estado de humedad, para poder evaluar las relaciones agua/cemento totales y efectivas del hormigón. Se ha estudiado el efecto de estos dos parámetros tanto en la consistencia como en la resistencia del hormigón reciclado. Finalmente, se ha estudiado el hormigón fabricado con un 50% y 100% de una partida de árido reciclado mixto de calidad admisible y se han ensayado las siguientes propiedades: consistencia, resistencia a compresión, resistencia a tracción indirecta, módulo de elasticidad dinámico, cambios de longitud, porosidad abierta y microscopía. Para analizar el efecto de los sulfatos, se han añadido artificialmente cantidades de yeso controladas en el hormigón reciclado. Se fabricaron hormigones con dos tipos de cemento, un cemento CEM I 42,5 R con elevado contenido de C3A, que debería dar lugar a expansiones mayores y un cemento con adiciones puzolánicas CEM II A-P 42,5 R, que atenuaría el comportamiento expansivo en el hormigón. Los resultados finales indican que la utilización del árido reciclado mixto en proporciones de hasta un 50%, permiten cubrir la gama de resistencias más exigentes dentro del hormigón no estructural. El contenido de sulfatos puede variar desde un 0,8% hasta un 1,9%, según el tipo de cemento y la proporción de sustitución del árido natural por árido reciclado mixto. Tanto en el caso del árido reciclado como en el hormigón, se ha realizado un estudio comparativo entre el conjunto de datos recopilados en la bibliografía y los obtenidos en este estudio experimental. En varias propiedades del hormigón reciclado, se han comparado los resultados con las fórmulas de la Instrucción EHE-08, para establecer unos coeficientes de corrección a aplicar a un hormigón reciclado con fines no estructurales. The main objective of this investigation work is to study the possibilities of using recycled mixed aggregate for a recycled concrete in non structural applications, justifying by means of experimentation both the validity of the recycled aggregate and recycled concrete. This thesis focused on the most restrictive and limiting aspects in the mixed aggregate use in recycled concrete, on the basis of the international standards as well on the results obtained in the bibliographic studies consulted. The first task achieved was the complete charcaterization of the mixed recycled aggregate properties, specially the following aspects: grain size analysis, fines content, absorption and densities, recycled aggregate composition, flakiness index, Los Angeles coefficient, lightweight particles and sulphate content. From this study, correlations between the properties were highlighted. The different correlations make possible to propose quality criterions for recycled mixed aggregate in concrete. Among the recycled aggregates studied, one of acceptable characteristics but near the limits established, was chosen to obtain conservative results in the recycled concrete made with it. In a second step, a complete recycled concrete mix design was made, to evaluate concrete consistency in the fresh state and concrete compressive strength in the hardened state and its properties were compared to those of a control concrete. The aggregate absorption capacity was analized with the presaturation methods achieved and in function of its state of humidity, to evaluate the total and effective water/cement ratios. The effect of these two parameters, both in consistency and compressive strength of recycled concrete, was studied. Finally, the concrete made with 50% and 100% of the elected recycled mixed aggregate was studied and the following concrete properties were tested: consistency, compressive strength, tensile strength, dynamic modulus of elasticity, length changes, water absorption under vacuum and microscopy. To analize the effect of sulphate content, some controlled quantities of gypsum were artificially added to the recycled concrete. Concretes with two types of cement were made, a cement CEM I 42,5 R with a high content of C3A, that would lead to major expansions and a cement with puzzolanic additions CEM II A-P 42,5 R that would lower the expansive behaviour of concrete. The final results indicate that the use of mixed recycled aggregate in proportions up to 50% make possible to cover the overall demanding strengths within the non structural concrete. Sulphates content can range between 0,8% and 1,9%, in function of the type of cement and the proportion of natural aggregate replacement by mixed recycled one. Both in the case of recycled aggregate and concrete, a comparative study was made between the data coming from the bibliography and those obtained in the experimental study. In several recycled concrete properties, the results were compared to the formulas of Spanish Instruction of Structural Concrete (Instruction EHE-08), to establish some correction coefficients to apply for a non structural recycled concrete.
Resumo:
Una estructura vibra con la suma de sus infinitos modos de vibración, definidos por sus parámetros modales (frecuencias naturales, formas modales y coeficientes de amortiguamiento). Estos parámetros se pueden identificar a través del Análisis Modal Operacional (OMA). Así, un equipo de investigación de la Universidad Politécnica de Madrid ha identificado las propiedades modales de un edificio de hormigón armado en Madrid con el método Identificación de los sub-espacios estocásticos (SSI). Para completar el estudio dinámico de este edificio, se ha desarrollado un modelo de elementos finitos (FE) de este edificio de 19 plantas. Este modelo se ha calibrado a partir de su comportamiento dinámico obtenido experimentalmente a través del OMA. Los objetivos de esta tesis son; (i) identificar la estructura con varios métodos de SSI y el uso de diferentes ventanas de tiempo de tal manera que se cuantifican incertidumbres de los parámetros modales debidos al proceso de estimación, (ii) desarrollar FEM de este edificio y calibrar este modelo a partir de su comportamiento dinámico, y (iii) valorar la bondad del modelo. Los parámetros modales utilizados en esta calibración han sido; espesor de las losas, densidades de los materiales, módulos de elasticidad, dimensiones de las columnas y las condiciones de contorno de la cimentación. Se ha visto que el modelo actualizado representa el comportamiento dinámico de la estructura con una buena precisión. Por lo tanto, este modelo puede utilizarse dentro de un sistema de monitorización estructural (SHM) y para la detección de daños. En el futuro, podrá estudiar la influencia de los agentes medioambientales, tales como la temperatura o el viento, en los parámetros modales. A structure vibrates according to the sum of its vibration modes, defined by their modal parameters (natural frequencies, damping ratios and modal shapes). These parameters can be identified through Operational Modal Analysis (OMA). Thus, a research team of the Technical University of Madrid has identified the modal properties of a reinforced-concrete-frame building in Madrid using the Stochastic Subspace Identification (SSI) method and a time domain technique for the OMA. To complete the dynamic study of this building, a finite element model (FE) of this 19-floor building has been developed throughout this thesis. This model has been updated from its dynamic behavior identified by the OMA. The objectives of this thesis are to; (i) identify the structure with several SSI methods and using different time blocks in such a way that uncertainties due to the modal parameter estimation are quantified, (ii) develop a FEM of this building and tune this model from its dynamic behavior, and (iii) Assess the quality of the model, the modal parameters used in this updating process have been; thickness of slabs, material densities, modulus of elasticity, column dimensions and foundation boundary conditions. It has been shown that the final updated model represents the structure with a very good accuracy. Thus, this model might be used within a structural health monitoring framework (SHM). The study of the influence of changing environmental factors (such as temperature or wind) on the model parameters might be considered as a future work.
Resumo:
Non-destructive, visual evaluation and mechanical testing techniques were used to assess the structural properties of 374 samples of chestnut (Castanea sativa). The principal components method was applied to establish and interpret correlations between variables obtained of modulus of elasticity, bending strength and density. The static modulus of elasticity presented higher correlation values than those obtained using non-destructive methods. Bending strength presented low correlations with the non-destructive parameters, but there was some relation to the different knot ratios defined. The relationship was stronger with the most widely used ratio, CKDR. No significant correlations were observed between any of the variables and density.
Resumo:
High performance materials are needed for the reconstruction of such a singular building as a cathedral, since in addition to special mechanical properties, high self compact ability, high durability and high surface quality, are specified. Because of the project’s specifications, the use of polypropylene fiber-reinforced, self-compacting concrete was selected by the engineering office. The low quality of local materials and the lack of experience in applying macro polypropylene fiber for structural reinforcement with these components materials required the development of a pretesting program. To optimize the mix design, performance was evaluated following technical, economical and constructability criteria. Since the addition of fibers reduces concrete self-compactability, many trials were run to determine the optimal mix proportions. The variables introduced were paste volume; the aggregate skeleton of two or three fractions plus limestone filler; fiber type and dosage. Two mix designs were selected from the preliminary results. The first one was used as reference for self-compactability and mechanical properties. The second one was an optimized mix with a reduction in cement content of 20 kg/m3and fiber dosage of 1 kg/m3. For these mix designs, extended testing was carried out to measure the compression and flexural strength, modulus of elasticity, toughness, and water permeability resistance
Resumo:
The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼103 s−1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processes taking place during deformation has been systematically examined. The results have been compared with those corresponding to the same alloy tested quasi-statically under equivalent conditions. It has been found that strain rate enhances the activation of extension twinning dramatically, while contraction and secondary twinning are not significantly influenced. The polarity of extension twinning is even reversed in some grains under selected testing conditions. Significant grain subdivision by the formation of geometrically necessary boundaries (GNBs) takes place during both quasi-static and dynamic deformation of this AZ31 alloy. It is remarkable that GNBs of high misorientations form even at the highest strain rates. The phenomenon of recovery has been found to be orientation dependent
Resumo:
Metodología para integrar numéricamente de forma termodinámicamente consistente las ecuaciones del problema termomecánico acoplado de un elemento discreto viscoso.
Resumo:
In this paper, the dynamic response of a hydro power plant for providing secondary regulation reserve is studied in detail. Special emphasis is given to the elastic water column effects both in the penstock and the tailrace tunnel. For this purpose, a nonlinear model based on the analogy between mass and momentum conservation equations of a water conduit and those of wave propagation in transmission lines is used. The influence of the plant configuration and design parameters on the fulfilment of the Spanish Electrical System Operator requirements is analysed
Resumo:
We study the dynamic response of a wind turbine structure subjected to theoretical seismic motions, taking into account the rotational component of ground shaking. Models are generated for a shallow moderate crustal earthquake in the Madrid Region (Spain). Synthetic translational and rotational time histories are computed using the Discrete Wavenumber Method, assuming a point source and a horizontal layered earth structure. These are used to analyze the dynamic response of a wind turbine, represented by a simple finite element model. Von Mises stress values at different heights of the tower are used to study the dynamical structural response to a set of synthetic ground motion time histories
Resumo:
The traditional ballast track structures are still being used in high speed railways lines with success, however technical problems or performance features have led to non-ballast track solution in some cases. A considerable maintenance work is needed for ballasted tracks due to the track deterioration. Therefore it is very important to understand the mechanism of track deterioration and to predict the track settlement or track irregularity growth rate in order to reduce track maintenance costs and enable new track structures to be designed. The objective of this work is to develop the most adequate and efficient models for calculation of dynamic traffic load effects on railways track infrastructure, and then evaluate the dynamic effect on the ballast track settlement, using a ballast track settlement prediction model, which consists of the vehicle/track dynamic model previously selected and a track settlement law. The calculations are based on dynamic finite element models with direct time integration, contact between wheel and rail and interaction with railway cars. A initial irregularity profile is used in the prediction model. The track settlement law is considered to be a function of number of loading cycles and the magnitude of the loading, which represents the long-term behavior of ballast settlement. The results obtained include the track irregularity growth and the contact force in the final interaction of numerical simulation
Resumo:
This paper reports the studies carried out to develop and calibrate the optimal models for the objectives of this work. In particular, quarter bogie model for vehicle, rail-wheel contact with Lagrangian multiplier method, 2D spatial discretization were selected as the optimal decisions. Furthermore, the 3D model of coupled vehicle-track also has been developed to contrast the results obtained in the 2D model. The calculations were carried out in the time domain and envelopes of relevant results were obtained for several track profiles and speed ranges. Distributed elevation irregularities were generated based on power spectral density (PSD) distributions. The results obtained include the wheel-rail contact forces, forces transmitted to the bogie by primary suspension. The latter loads are relevant for the purpose of evaluating the performance of the infrastructure
Resumo:
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct
Resumo:
In this work a methodology for analysing the lateral coupled behavior of large viaducts and high-speed trains is proposed. The finite element method is used for the structure, multibody techniques are applied for vehicles and the interaction between them is established introducing wheel-rail nonlinear contact forces. This methodology is applied for the analysis of the railway viaduct of the R´ıo Barbantino, which is a very long and tall bridge in the north-west spanish high-speed line.
Resumo:
We present two approaches to cluster dialogue-based information obtained by the speech understanding module and the dialogue manager of a spoken dialogue system. The purpose is to estimate a language model related to each cluster, and use them to dynamically modify the model of the speech recognizer at each dialogue turn. In the first approach we build the cluster tree using local decisions based on a Maximum Normalized Mutual Information criterion. In the second one we take global decisions, based on the optimization of the global perplexity of the combination of the cluster-related LMs. Our experiments show a relative reduction of the word error rate of 15.17%, which helps to improve the performance of the understanding and the dialogue manager modules.
Resumo:
Underpasses are common in modern railway lines. Wildlife corridors and drainage conduits often fall into this category of partially buried structures. Their dynamic behavior has received far less attention than that of other structures such as bridges, but their large number makes their study an interesting challenge from the viewpoint of safety and cost savings. Here, we present a complete study of a culvert, including on-site measurements and numerical modeling. The studied structure belongs to the high-speed railway line linking Segovia and Valladolid in Spain. The line was opened to traffic in 2004. On-site measurements were performed for the structure by recording the dynamic response at selected points of the structure during the passage of high-speed trains at speeds ranging between 200 and 300 km/h. The measurements provide not only reference values suitable for model fitting, but also a good insight into the main features of the dynamic behavior of this structure. Finite element techniques were used to model the dynamic behavior of the structure and its key features. Special attention is paid to vertical accelerations, the values of which should be limited to avoid track instability according to Eurocode. This study furthers our understanding of the dynamic response of railway underpasses to train loads.