22 resultados para Dynamic Threshold Algorithm

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En el proceso de cálculo de redes de tuberías se maneja un conjunto de variables con unas características muy peculiares, ya que son discretas y estandarizadas. Por lo tanto su evolución se produce por escalones (la presión nominal, el diámetro y el costo de los tubos). Por otro lado la presión de diseño de la red es una función directa de la presión de cabecera. En el proceso de optimización mediante programación dinámica la presión de cabecera se va reduciendo gradualmente en cada secuencia del proceso, haciendo que evolucione a la par la presión de diseño, lo que genera a su vez saltos discriminados en la presión nominal de los tramos, y con ello en su costo y en su gradiente de cambio. En esta tesis doctoral se analiza si estos cambios discriminados que se producen en el gradiente de cambio de algunos tramos en el curso de una secuencia, ocasionados por la evolución de la presión de cabecera de la red, generan interferencias que alteran el proceso secuencial de la programación dinámica. La modificación del gradiente de cambio durante el transcurso de una secuencia se conoce con el nombre de mutación, la cual puede ser activa cuando involucra a un tramo optimo modificando las condiciones de la transacción o pasiva si no crea afección alguna. En el análisis realizado se distingue entre la mutación del gradiente de cambio de los tramos óptimos (que puede generarse exclusivamente en el conjunto de los trayectos que los albergan), y entre los efectos que el cambio de timbraje produce en el resto de los tramos de la red (incluso los situados aguas abajo de los nudos con holgura de presión nula) sobre el mecanismo iterativo, estudiando la compatibilidad de este fenómeno con el principio de óptimo de Bellman. En el proceso de investigación llevado a cabo se destaca la fortaleza que da al proceso secuencial del método Granados el hecho de que el gradiente de cambio siempre sea creciente en el avance hacia el óptimo, es decir que el costo marginal de la reducción de las pérdidas de carga de la red que se consigue en una iteración siempre sea más caro que el de la iteración precedente. Asimismo, en el estudio realizado se revisan los condicionantes impuestos al proceso de optimización, incluyendo algunos que hasta ahora no se han tenido en cuenta en los estudios de investigación, pero que están totalmente integrados en la ingeniería práctica, como es la disposición telescópica de las redes (reordenación de los diámetros de mayor a menor de cabeza a cola de la red), y la disposición de un único diámetro por tramo, en lugar de que estén compartidos por dos diámetros contiguos (con sus salvedades en caso de tramos de gran longitud, o en otras situaciones muy específicas). Finalmente se incluye un capítulo con las conclusiones, aportaciones y recomendaciones, las cuales se consideran de gran utilidad para la ingeniería práctica, entre las que se destaca la perfección del método secuencial, la escasa transcendencia de las mutaciones del gradiente de cambio y la forma en que pueden obviarse, la inocuidad de las mutaciones pasivas y el cumplimiento del principio de Bellman en todo el proceso de optimización. The sizing process of a water distribution network is based on several variables, being some of them special, as they are discrete and their values are standardized: pipe pressure rating, pipe diameter and pipe cost. On another note, the sizing process is directly related with the pressure at the network head. Given that during the optimization by means of the Granados’ Method (based on dynamic programming) the pressure at the network head is being gradually reduced, a jump from one pipe pressure rating to another may arise during the sequential process, leading to changes on the pipe cost and on the gradient change (unitary cost for reducing the head losses). This chain of changes may, in turn, affect the sequential process diverting it from an optimal policies path. This thesis analyses how the abovementioned alterations could influence the results of the dynamic programming algorithm, that is to say the compatibility with the Bellman’s Principle of Optimality, which states that the sequence has to follow a route of optimal policies, and that past decisions should not influence the remaining ones. The modification of the gradient change is known as mutation. Mutations are active when they affect the optimal link (the one which was selected to be changed during iteration) or passive when they do not alter the selection of the optimal link. The thesis analysed the potential mutations processes along the network, both on the optimal paths and also on the rest of the network, and its influence on the final results. Moreover, the investigation analysed the practical restrictions of the sizing process that are fully integrated in the applied engineering, but not always taken into account by the optimization tools. As the telescopic distribution of the diameters (i.e. larger diameters are placed at the network head) and the use of a unique diameter per link (with the exception of very large links, where two consecutive diameters may be placed). Conclusions regarding robustness of the dynamic programming algorithm are given. The sequence of the Granados Method is quite robust and it has been shown capable to auto-correct the mutations that could arise during the optimization process, and to achieve an optimal distribution even when the Bellman’s Principle of Optimality is not fully accomplished. The fact that the gradient change is always increasing during the optimization (that is to say, the marginal cost of reducing head losses is always increasing), provides robustness to the algorithm, as looping are avoided in the optimization sequence. Additionally, insight into the causes of the mutation process is provided and practical rules to avoid it are given, improving the current definition and utilization of the Granados’ Method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Future high-quality consumer electronics will contain a number of applications running in a highly dynamic environment, and their execution will need to be efficiently arbitrated by the underlying platform software. The multimedia applications that currently execute in such similar contexts face frequent run-time variations in their resource demands, originated by the greedy nature of the multimedia processing itself. Changes in resource demands are triggered by numerous reasons (e.g. a switch in the input media compression format). Such situations require real-time adaptation mechanisms to adjust the system operation to the new requirements, and this must be done seamlessly to satisfy the user experience. One solution for efficiently managing application execution is to apply quality of service resource management techniques, based on assigning and enforcing resource contracts to applications. Most resource management solutions provide temporal isolation by enforcing resource assignments and avoiding any resource overruns. However, this has a clear limitation over the cost-effective resource usage. This paper presents a simple priority assignment scheme based on uniform priority bands to allow that greedy multimedia tasks incur in safe overruns that increase resource usage and do not threaten the timely execution of non-overrunning tasks. Experimental results show that the proposed priority assignment scheme in combination with a resource accounting mechanism preserves timely multimedia execution and delivery, achieves a higher cost-effective processor usage, and guarantees the execution isolation of non-overrunning tasks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In contrast to traditional push-based protocols, adaptive streaming techniques like Dynamic Adaptive Streaming over HTTP (DASH) fix attention on the client, who dynamically requests different-quality portions of the content to cope with a limited and variable bandwidth but aiming at maximizing the quality perceived by the user. Since DASH adaptation logic at the client is not covered by the standard, we propose a solution based on Stochastic Dynamic Programming (SDP) techniques to find the optimal request policies that guarantee the users' Quality of Experience (QoE). Our algorithm is evaluated in a simulated streaming session and is compared with other adaptation approaches. The results show that our proposal outperforms them in terms of QoE, requesting higher qualities on average.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal tracking has been addressed by different initiatives over the last two decades. Most of them rely on satellite connectivity on every single node and lack of energy-saving strategies. This paper presents several new contributions on the tracking of dynamic heterogeneous asynchronous networks (primary nodes with GPS and secondary nodes with a kinetic generator) motivated by the animal tracking paradigm with random transmissions. A simple approach based on connectivity and coverage intersection is compared with more sophisticated algorithms based on ad-hoc implementations of distributed Kalman-based filters that integrate measurement information using Consensus principles in order to provide enhanced accuracy. Several simulations varying the coverage range, the random behavior of the kinetic generator (modeled as a Poisson Process) and the periodic activation of GPS are included. In addition, this study is enhanced with HW developments and implementations on commercial off-the-shelf equipment which show the feasibility for performing these proposals on real hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The boundary element method (BEM) has been applied successfully to many engineering problems during the last decades. Compared with domain type methods like the finite element method (FEM) or the finite difference method (FDM) the BEM can handle problems where the medium extends to infinity much easier than domain type methods as there is no need to develop special boundary conditions (quiet or absorbing boundaries) or infinite elements at the boundaries introduced to limit the domain studied. The determination of the dynamic stiffness of arbitrarily shaped footings is just one of these fields where the BEM has been the method of choice, especially in the 1980s. With the continuous development of computer technology and the available hardware equipment the size of the problems under study grew and, as the flop count for solving the resulting linear system of equations grows with the third power of the number of equations, there was a need for the development of iterative methods with better performance. In [1] the GMRES algorithm was presented which is now widely used for implementations of the collocation BEM. While the FEM results in sparsely populated coefficient matrices, the BEM leads, in general, to fully or densely populated ones, depending on the number of subregions, posing a serious memory problem even for todays computers. If the geometry of the problem permits the surface of the domain to be meshed with equally shaped elements a lot of the resulting coefficients will be calculated and stored repeatedly. The present paper shows how these unnecessary operations can be avoided reducing the calculation time as well as the storage requirement. To this end a similar coefficient identification algorithm (SCIA), has been developed and implemented in a program written in Fortran 90. The vertical dynamic stiffness of a single pile in layered soil has been chosen to test the performance of the implementation. The results obtained with the 3-d model may be compared with those obtained with an axisymmetric formulation which are considered to be the reference values as the mesh quality is much better. The entire 3D model comprises more than 35000 dofs being a soil region with 21168 dofs the biggest single region. Note that the memory necessary to store all coefficients of this single region is about 6.8 GB, an amount which is usually not available with personal computers. In the problem under study the interface zone between the two adjacent soil regions as well as the surface of the top layer may be meshed with equally sized elements. In this case the application of the SCIA leads to an important reduction in memory requirements. The maximum memory used during the calculation has been reduced to 1.2 GB. The application of the SCIA thus permits problems to be solved on personal computers which otherwise would require much more powerful hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most data stream classification techniques assume that the underlying feature space is static. However, in real-world applications the set of features and their relevance to the target concept may change over time. In addition, when the underlying concepts reappear, reusing previously learnt models can enhance the learning process in terms of accuracy and processing time at the expense of manageable memory consumption. In this paper, we propose mining recurring concepts in a dynamic feature space (MReC-DFS), a data stream classification system to address the challenges of learning recurring concepts in a dynamic feature space while simultaneously reducing the memory cost associated with storing past models. MReC-DFS is able to detect and adapt to concept changes using the performance of the learning process and contextual information. To handle recurring concepts, stored models are combined in a dynamically weighted ensemble. Incremental feature selection is performed to reduce the combined feature space. This contribution allows MReC-DFS to store only the features most relevant to the learnt concepts, which in turn increases the memory efficiency of the technique. In addition, an incremental feature selection method is proposed that dynamically determines the threshold between relevant and irrelevant features. Experimental results demonstrating the high accuracy of MReC-DFS compared with state-of-the-art techniques on a variety of real datasets are presented. The results also show the superior memory efficiency of MReC-DFS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AUTOFLY-Aid Project aims to develop and demonstrate novel automation support algorithms and tools to the flight crew for flight critical collision avoidance using “dynamic 4D trajectory management”. The automation support system is envisioned to improve the primary shortcomings of TCAS, and to aid the pilot through add-on avionics/head-up displays and reality augmentation devices in dynamically evolving collision avoidance scenarios. The main theoretical innovative and novel concepts to be developed by AUTOFLY-Aid project are a) design and development of the mathematical models of the full composite airspace picture from the flight deck’s perspective, as seen/measured/informed by the aircraft flying in SESAR 2020, b) design and development of a dynamic trajectory planning algorithm that can generate at real-time (on the order of seconds) flyable (i.e. dynamically and performance-wise feasible) alternative trajectories across the evolving stochastic composite airspace picture (which includes new conflicts, blunder risks, terrain and weather limitations) and c) development and testing of the Collision Avoidance Automation Support System on a Boeing 737 NG FNPT II Flight Simulator with synthetic vision and reality augmentation while providing the flight crew with quantified and visual understanding of collision risks in terms of time and directions and countermeasures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite that Critical Infrastructures (CIs) security and surveillance are a growing concern for many countries and companies, Multi Robot Systems (MRSs) have not been yet broadly used in this type of facilities. This dissertation presents a novel study of the challenges arisen by the implementation of this type of systems and proposes solutions to specific problems. First, a comprehensive analysis of different types of CIs has been carried out, emphasizing the influence of the different characteristics of the facilities in the design of a security and surveillance MRS. One of the most important needs for the surveillance of a CI is the detection of intruders. From a technical point of view this problem can be abstracted as equivalent to the Detection and Tracking of Mobile Objects (DATMO). This dissertation proposes algorithms to solve this specific problem in a CI environment. Using 3D range images of the environment as input data, two detection algorithms for ground robots have been developed. These detection algorithms provide a list of moving objects in the robot detection area. Direct image differentiation and computer vision techniques are used when the robot is static. Alternatively, multi-layer ground reconstructions are compared to detect the dynamic objects when the robot is moving. Since CIs usually spread over large areas, it is very useful to incorporate aerial vehicles in the surveillance MRS. Therefore, a moving object detection algorithm for aerial vehicles has been also developed. This algorithm compares the real optical flow obtained from a down-face oriented camera with an artificial optical flow computed using a RANSAC based homography matrix. Two tracking algorithms have been developed to follow the moving objects trajectories. These algorithms can efficiently handle occlusions and crossings, as well as exchange information among robots. The multirobot tracking can be applied to any type of communication structure: centralized, decentralized or a combination of both. Even more, the developed tracking algorithms are independent of the detection algorithms and could be potentially used with other detection procedures or even with static sensors, such as cameras. In addition, using the 3D point clouds available to the robots, a relative localization algorithm has been developed to improve the position estimation of a given robot with observations from other robots. All the developed algorithms have been extensively tested in different simulated CIs using the Webots robotics simulator. Furthermore, the algorithms have also been validated with real robots operating in real scenarios. In conclusion, this dissertation presents a multirobot approach to Critical Infrastructure Surveillance, mainly focusing on Detecting and Tracking Dynamic Objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems used for target localization, such as goods, individuals, or animals, commonly rely on operational means to meet the final application demands. However, what would happen if some means were powered up randomly by harvesting systems? And what if those devices not randomly powered had their duty cycles restricted? Under what conditions would such an operation be tolerable in localization services? What if the references provided by nodes in a tracking problem were distorted? Moreover, there is an underlying topic common to the previous questions regarding the transfer of conceptual models to reality in field tests: what challenges are faced upon deploying a localization network that integrates energy harvesting modules? The application scenario of the system studied is a traditional herding environment of semi domesticated reindeer (Rangifer tarandus tarandus) in northern Scandinavia. In these conditions, information on approximate locations of reindeer is as important as environmental preservation. Herders also need cost-effective devices capable of operating unattended in, sometimes, extreme weather conditions. The analyses developed are worthy not only for the specific application environment presented, but also because they may serve as an approach to performance of navigation systems in absence of reasonably accurate references like the ones of the Global Positioning System (GPS). A number of energy-harvesting solutions, like thermal and radio-frequency harvesting, do not commonly provide power beyond one milliwatt. When they do, battery buffers may be needed (as it happens with solar energy) which may raise costs and make systems more dependent on environmental temperatures. In general, given our problem, a harvesting system is needed that be capable of providing energy bursts of, at least, some milliwatts. Many works on localization problems assume that devices have certain capabilities to determine unknown locations based on range-based techniques or fingerprinting which cannot be assumed in the approach considered herein. The system presented is akin to range-free techniques, but goes to the extent of considering very low node densities: most range-free techniques are, therefore, not applicable. Animal localization, in particular, uses to be supported by accurate devices such as GPS collars which deplete batteries in, maximum, a few days. Such short-life solutions are not particularly desirable in the framework considered. In tracking, the challenge may times addressed aims at attaining high precision levels from complex reliable hardware and thorough processing techniques. One of the challenges in this Thesis is the use of equipment with just part of its facilities in permanent operation, which may yield high input noise levels in the form of distorted reference points. The solution presented integrates a kinetic harvesting module in some nodes which are expected to be a majority in the network. These modules are capable of providing power bursts of some milliwatts which suffice to meet node energy demands. The usage of harvesting modules in the aforementioned conditions makes the system less dependent on environmental temperatures as no batteries are used in nodes with harvesters--it may be also an advantage in economic terms. There is a second kind of nodes. They are battery powered (without kinetic energy harvesters), and are, therefore, dependent on temperature and battery replacements. In addition, their operation is constrained by duty cycles in order to extend node lifetime and, consequently, their autonomy. There is, in turn, a third type of nodes (hotspots) which can be static or mobile. They are also battery-powered, and are used to retrieve information from the network so that it is presented to users. The system operational chain starts at the kinetic-powered nodes broadcasting their own identifier. If an identifier is received at a battery-powered node, the latter stores it for its records. Later, as the recording node meets a hotspot, its full record of detections is transferred to the hotspot. Every detection registry comprises, at least, a node identifier and the position read from its GPS module by the battery-operated node previously to detection. The characteristics of the system presented make the aforementioned operation own certain particularities which are also studied. First, identifier transmissions are random as they depend on movements at kinetic modules--reindeer movements in our application. Not every movement suffices since it must overcome a certain energy threshold. Second, identifier transmissions may not be heard unless there is a battery-powered node in the surroundings. Third, battery-powered nodes do not poll continuously their GPS module, hence localization errors rise even more. Let's recall at this point that such behavior is tight to the aforementioned power saving policies to extend node lifetime. Last, some time is elapsed between the instant an identifier random transmission is detected and the moment the user is aware of such a detection: it takes some time to find a hotspot. Tracking is posed as a problem of a single kinetically-powered target and a population of battery-operated nodes with higher densities than before in localization. Since the latter provide their approximate positions as reference locations, the study is again focused on assessing the impact of such distorted references on performance. Unlike in localization, distance-estimation capabilities based on signal parameters are assumed in this problem. Three variants of the Kalman filter family are applied in this context: the regular Kalman filter, the alpha-beta filter, and the unscented Kalman filter. The study enclosed hereafter comprises both field tests and simulations. Field tests were used mainly to assess the challenges related to power supply and operation in extreme conditions as well as to model nodes and some aspects of their operation in the application scenario. These models are the basics of the simulations developed later. The overall system performance is analyzed according to three metrics: number of detections per kinetic node, accuracy, and latency. The links between these metrics and the operational conditions are also discussed and characterized statistically. Subsequently, such statistical characterization is used to forecast performance figures given specific operational parameters. In tracking, also studied via simulations, nonlinear relationships are found between accuracy and duty cycles and cluster sizes of battery-operated nodes. The solution presented may be more complex in terms of network structure than existing solutions based on GPS collars. However, its main gain lies on taking advantage of users' error tolerance to reduce costs and become more environmentally friendly by diminishing the potential amount of batteries that can be lost. Whether it is applicable or not depends ultimately on the conditions and requirements imposed by users' needs and operational environments, which is, as it has been explained, one of the topics of this Thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/ webcite.