24 resultados para Dynamic Contact Angle
em Universidad Politécnica de Madrid
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
In this paper the influence of gravity on the solidification of a drop formed at the end of a rod is analyzed. Although similar studies (but ignoring gravity effects) already exist, a theoretical analysis including gravity effects allows one to improve the experimental procedure to measure on Earth relevant properties of crystals (mainly the receding contact angle <£,) which are of importance in shaped crystal growth processes. One of the main results here obtained are the shapes of the sohdified drops, which are strongly dependent on the value of <#>,. Therefore, fitting theoretical shapes to experimental ones is a wav to perform accurate measurements of <^.
Resumo:
From a physical perspective, a joint experiences fracturing processes that affect the rock at both microscopic and macroscopic levels. The result is a behaviour that follows a fractal structure. In the first place, for saw-tooth roughness profiles, the use of the triadic Koch curve appears to be adequate and by means of known correlations the JRC parameter is obtained from the angle measured on the basis of the height and length of the roughnesses. Therefore, JRC remains related to the geometric pattern that defines roughness by fractal analysis. In the second place, to characterise the geometry of irregularities with softened profiles, consequently, is proposed a characterisation of the fractal dimension of the joints with a circumference arc generator that is dependent on an average contact angle with regard to the mid-plane. The correlation between the JRC and the fractal dimension of the model is established with a defined statistical ratio.
Resumo:
Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.
Resumo:
La preservación del patrimonio bibliográfico y documental en papel es uno de los mayores retos a los que se enfrentan bibliotecas y archivos de todo el mundo. La búsqueda de soluciones al problema del papel degradado ha sido abordada históricamente desde dos líneas de trabajo predominantes: la conservación de estos documentos mediante la neutralización de los ácidos presentes en ellos con agentes alcalinos, y su restauración mediante el método de laminación fundamentalmente con papel de origen vegetal. Sin embargo, no se ha explorado con éxito la posibilidad de reforzar la celulosa dañada, y el problema sigue sin encontrar una solución satisfactoria. Hasta el día de hoy, el desarrollo de tratamientos basados en biotecnología en la conservación del patrimonio documental ha sido muy escaso, aunque la capacidad de ciertas bacterias de producir celulosa lleva a plantear su uso en el campo de la conservación y restauración del papel. La celulosa bacteriana (CB) es químicamente idéntica a la celulosa vegetal, pero su organización macroscópica es diferente. Sus propiedades únicas (alto grado de cristalinidad, durabilidad, resistencia y biocompatibilidad) han hecho de este material un excelente recurso en diferentes campos. En el desarrollo de esta tesis se ha estudiado el uso de la celulosa bacteriana, de alta calidad, generada por Gluconacetobacter sucrofermentans CECT 7291, para restaurar documentos deteriorados y consolidar los que puedan estar en peligro de degradación, evitando así su destrucción y proporcionando al papel que se restaura unas buenas propiedades mecánicas, ópticas y estructurales. Se desarrollan asimismo protocolos de trabajo que permitan la aplicación de dicha celulosa. En primer lugar se seleccionó el medio de cultivo que proporcionó una celulosa adecuada para su uso en restauración. Para ello se evaluó el efecto que tienen sobre la celulosa generada las fuentes de carbono y nitrógeno del medio de cultivo, manteniendo como parámetros fijos la temperatura y el pH inicial del medio, y efectuando los ensayos en condiciones estáticas. Se evaluó, también, el efecto que tiene en la CB la adición de un 1% de etanol al medio de cultivo. Las capas de celulosa se recolectaron a cuatro tiempos distintos, caracterizando en cada uno de ellos el medio de cultivo (pH y consumo de fuente de carbono), y las capas de CB (pH, peso seco y propiedades ópticas y mecánicas). La mejor combinación de fuentes de carbono y nitrógeno resultó ser fructosa más extracto de levadura y extracto de maíz, con o sin etanol, que proporcionaban una buena relación entre la producción de celulosa y el consumo de fuente de carbono, y que generaban una capa de celulosa resistente y homogénea. La adición de etanol al medio de cultivo, si bien aumentaba la productividad, causaba un descenso apreciable de pH. Las capas de CB obtenidas con los medios de cultivo optimizados se caracterizaron en términos de sus índices de desgarro y estallido, propiedades ópticas, microscopía electrónica de barrido (SEM), difracción de rayos-X, espectroscopía infrarroja con transformada de Fourier (FTIR), grado de polimerización, ángulos de contacto estáticos y dinámicos, y porosimetría de intrusión de mercurio. Por otro lado hay que tener en cuenta que el material restaurado debe ser estable con el tiempo. Por ello esta misma caracterización se efectuó tras someter a las capas de CB a un proceso de envejecimiento acelerado. Los resultados mostraron que la CB resultante tiene un elevado índice de cristalinidad, baja porosidad interna, buenas propiedades mecánicas, y alta estabilidad en el tiempo. Para desarrollar los protocolos de trabajo que permitan la restauración con esta celulosa optimizada, se comienzó con un proceso de selección de los papeles que van a ser restaurados. Se eligieron tres tipos de papeles modelo, hechos con pasta mecánica, química y filtro (antes y después de ser sometidos a un proceso de envejecimiento acelerado), y tres libros viejos adquiridos en el mercado de segunda mano. Estos ejemplares a restaurar se caracterizaron también en términos de sus propiedades mecánicas y fisicoquímicas. El primer protocolo de restauración con CB que se evaluó fue el denominado laminación. Consiste en aplicar un material de refuerzo al documento mediante el uso de un adhesivo. Se seleccionó para ello la CB producida en el medio de cultivo optimizado con un 1% de etanol. Se aplicó un método de purificación alcalino (1 hora a 90 °C en NaOH al 1%) y como adhesivo se seleccionó almidón de trigo. El proceso de laminación se efectuó también con papel japonés (PJ), un material habitualmente utilizado en conservación, para comparar ambos materiales. Se concluyó que no hay diferencias significativas en las características estudiadas entre los dos tipos de materiales de refuerzo. Se caracterizó el material reforzado y, también, después de sufrir un proceso de envejecimiento acelerado. Los papeles laminados con CB mostraban diferencias más marcadas en las propiedades ópticas que los restaurados con PJ, con respecto a los originales. Sin embargo, el texto era más legible cuando el material de restauración era la CB. La mojabilidad disminuía con ambos tipos de refuerzo, aunque en los papeles laminados con CB de manera más marcada e independiente del material a restaurar. Esto se debe a la estructura cerrada de la CB, que también conduce a una disminución en la permeabilidad al aire. Este estudio sugiere que la CB mejora la calidad del papel deteriorado, sin alterar la información que contiene, y que esta mejora se mantiene a lo largo del tiempo. Por tanto, la CB puede ser utilizada como material de refuerzo para laminar, pudiendo ser más adecuada que el PJ para ciertos tipos de papeles. El otro método de restauración que se estudió fue la generación in situ de la CB sobre el papel a restaurar. Para ello se seleccionó el medio de cultivo sin etanol, ya que el descenso de pH que causaba su presencia podría dañar el documento a restaurar. El método de purificación elegido fue un tratamiento térmico (24 horas a 65 °C), menos agresivo para el material a restaurar que el tratamiento alcalino. Se seleccionó la aplicación del medio de cultivo con la bacteria mediante pincel sobre el material a restaurar. Una vez caracterizado el material restaurado, y éste mismo tras sufrir un proceso de envejecimiento acelerado, se concluyó que no hay modificación apreciable en ninguna característica, salvo en la permeabilidad al aire, que disminuye de manera muy evidente con la generación de CB, dando lugar a un material prácticamente impermeable al aire. En general se puede concluir que ha quedado demostrada la capacidad que tiene la celulosa generada por la bacteria Gluconacetobacter sucrofermentans CECT 7291 para ser utilizada como material de refuerzo en la restauración del patrimonio documental en papel. Asimismo se han desarrollado dos métodos de aplicación, uno ex situ y otro in situ, para efectuar esta tarea de restauración. ABSTRACT The preservation of bibliographic and documentary heritage is one of the biggest challenges that libraries and archives around the world have to face. The search for solutions to the problem of degraded paper has historically been focused from two predominants lines of work: the conservation of these documents by the neutralization of acids in them with alkaline agents, and their restoration by lining them with, basically, cellulose from vegetal sources. However, the possibility of strengthening the damaged cellulose has not been successfully explored, and the problem still persists. Until today, the development of biotechnology-based treatments in documentary heritage conservation has been scarce, although the ability of certain bacteria to produce cellulose takes to propose its use in the field of conservation and restoration of paper. The bacterial cellulose (BC) is chemically identical to the plant cellulose, but its macroscopic organization is different. Its unique properties (high degree of crystallinity, durability, strength and biocompatibility), makes it an excellent resource in different fields. The use of high-quality BC generated by Gluconacetobacter sucrofermentans CECT 7291 to restore damaged documents and to consolidate those that may be at risk of degradation, has been studied in this thesis, trying to prevent the document destruction, and to get reinforced papers with good mechanical, optical and structural properties. Protocols that allow the implementation of the BC as a reinforcing material were also developed. First of all, in order to select the culture medium that provides a cellulose suitable for its use in restoration, it has been evaluated the effect that the carbon and nitrogen sources from the culture medium have on the generated BC, keeping the temperature and the initial pH of the medium as fixed parameters, and performing the culture without shaking. The effect of the addition of 1% ethanol to the culture medium on BC properties was also evaluated. The cellulose layers were collected at four different times, characterizing in all of them the culture medium (pH and carbon source consumption), and the BC sheets (pH, dry weight and optical and mechanical properties). The best combination of carbon and nitrogen sources proved to be fructose plus yeast extract and corn steep liquor, with or without ethanol, which provided a good balance between the cellulose production and the consumption of carbon source, and generating BC sheets homogeneous and resistant. The addition of ethanol to the culture medium increased productivity but caused a noticeable decrement in pH. The BC layers generated with these optimized culture media, have been characterized in terms of tear and burst index, optical properties, scanning electron microscopy (SEM), X-ray diffraction, infrared Fourier transform spectroscopy (FTIR), polymerization degree, static and dynamic contact angles, and mercury intrusion porosimetry. Moreover it must be kept in mind that the restored materials should be stable over time. Therefore, the same characterization was performed after subjecting the layers of BC to an accelerated aging process. The results showed that the BC sheets obtained have a high crystallinity index, low internal porosity, good mechanical properties, and high stability over time. To develop working protocols to use this optimized BC in paper restoration, the first step was to select the samples to restore. Three types of model papers, made from mechanical pulp, chemical pulp and filter paper (before and after an accelerated aging process), and three old books purchased in the second hand market, were chosen. These specimens to be restored were also characterized in terms of its mechanical and physicochemical properties. The first protocol of restoration with BC to be evaluated is called linning. It consists on applying a reinforcing material to the document using an adhesive. The BC produced in the optimized culture medium with 1% ethanol was selected. An alkali purification method (1 hour at 90 °C in 1% NaOH) was applied, and wheat starch was selected as adhesive. The linning process was also carried out with Japanese paper (JP), a material commonly used in conservation, in order to compare both materials. It was concluded that there are no significant differences in the characteristics studied of the two types of reinforcing materials. The reinforced materials were characterized before and after undergoing to an accelerated aging. Papers lined with BC showed more marked differences in the optical properties that papers restored with JP. However, the text was more readable when BC was the reinforcing material. Wettability decreased with both types of reinforcement, although in the papers linned with BC it happened more marked and independently of the sample to restore. This is due to the closed structure of BC, which also leads to a decrement in air permeance. This study suggests that BC improves the deteriorated paper quality, without altering the information on it, and that this improvement is maintained over time. Therefore, the BC may be used as reinforcing material for linning, being more suitable than the JP to restore certain types of papers. The other restoration method to be evaluated was the in situ generation of BC over the paper to restore. For this purpose the culture medium without ethanol was selected, as the pH decrement caused by his presence would damage the document to restore. As purification method a heat treatment (24 hours at 65 °C) was chosen, less aggressive to the material to restore than the alkaline treatment. It was decided to apply the culture medium with the bacteria onto the material to restore with a brush. The reinforced material was characterized before and after an accelerated aging process. It was concluded that there was no substantial change in any characteristic, except for air permeance, which decreases very sharply after the generation of BC, getting a substantially air impermeable material. In general, it can be concluded that the ability of BC produced by Gluconacetobacter sucrofermentans CECT 7291 for its use as a reinforcing material in the restoration of paper documentary heritage, has been demonstrated. Also, two restoration methods, one ex situ and another in situ have been developed.
Resumo:
In adhesion, the wetting process depends on three fundamental factors: the surface topography of the adherend, the viscosity of the adhesive, and the surface energy of both. The aim of this paper is to study the influence of viscosity and surface roughness on the wetting and their effect on the bond strength. For this purpose, an acrylic adhesive with different viscosities was synthesized and some properties, such as viscosity and surface tension, were studied before adhesive curing took place. Furthermore, the contact angle and the lap-shear strength were analyzed using aluminum adherends with two different roughnesses. Scanning electron microscopy was used to determine the effect of the viscosity and the roughness on the joint interface. The results showed that the adhesive exhibits an optimal value of viscosity. Below this value, at low viscosities, the low neoprene content produces poor bond strength due to the reduced toughness of the adhesive. Additionally, it also produces a high shrinkage during curing, which leads to the apparition of residual stresses that weakens the interfacial strength. However, once the optimum value, an increase in the viscosity produces a negative effect on the joint strength as a result of an important decrease in the wettability.
Resumo:
The purpose of this study is to determine the critical wear levels of the contact wire of the catenary on metropolitan lines. The study has focussed on the zones of contact wire where localised wear is produced, normally associated with the appearance of electric arcs. To this end, a finite element model has been developed to study the dynamics of pantograph-catenary interaction. The model includes a zone of localised wear and a singularity in the contact wire in order to simulate the worst case scenario from the point of view of stresses. In order to consider the different stages in the wire wear process, different depths and widths of the localised wear zone were defined. The results of the dynamic simulations performed for each stage of wear let the area of the minimum resistant section of the contact wire be determined for which stresses are greater than the allowable stress. The maximum tensile stress reached in the contact wire shows a clear sensitivity to the size of the local wear zone, defined by its width and depth. In this way, if the wear measurements taken with an overhead line recording vehicle are analysed, it will be possible to calculate the potential breakage risk of the wire. A strong dependence of the tensile forces of the contact wire has also been observed. These results will allow priorities to be set for replacing the most critical sections of wire, thereby making maintenance much more efficient. The results obtained show that the wire replacement criteria currently borne in mind have turned out to be appropriate, although in some wear scenarios these criteria could be adjusted even more, and so prolong the life cycle of the contact wire.
Resumo:
Culverts are very common in recent railway lines. Wild life corridors and drainage conducts often fall in this category of partially buried structures. Their dynamic behavior has received far less attention than other structures such as bridges but its large number makes that study an interesting challenge from the point of view of safety and savings. In this paper a complete study of a culvert, including on-site measurements as well as numerical modelling, will be presented. The structure belongs to the high speed railway line linking Segovia and Valladolid, in Spain. The line was opened to traffic in 2004. Its dimensions (3x3m) are the most frequent along the line. Other factors such as reduced overburden (0.6m) and an almost right angle with the track axis make it an interesting example to extract generalized conclusions. On site measurements have been performed in the structure recording the dynamic response at selected points of the structure during the passage of high speed trains at speeds ranging between 200 and 300km/h. The measurements by themselves provide a good insight into the main features of the dynamic behaviour of the structure. A 3D finite element model of the structure, representing its key features was also studied as it allows further understanding of the dynamic response to the train loads . In the paper the discrepancies between predicted and measured vibration levels will be analyzed and some advices on numerical modelling will be proposed
Resumo:
The traditional ballast track structures are still being used in high speed railways lines with success, however technical problems or performance features have led to non-ballast track solution in some cases. A considerable maintenance work is needed for ballasted tracks due to the track deterioration. Therefore it is very important to understand the mechanism of track deterioration and to predict the track settlement or track irregularity growth rate in order to reduce track maintenance costs and enable new track structures to be designed. The objective of this work is to develop the most adequate and efficient models for calculation of dynamic traffic load effects on railways track infrastructure, and then evaluate the dynamic effect on the ballast track settlement, using a ballast track settlement prediction model, which consists of the vehicle/track dynamic model previously selected and a track settlement law. The calculations are based on dynamic finite element models with direct time integration, contact between wheel and rail and interaction with railway cars. A initial irregularity profile is used in the prediction model. The track settlement law is considered to be a function of number of loading cycles and the magnitude of the loading, which represents the long-term behavior of ballast settlement. The results obtained include the track irregularity growth and the contact force in the final interaction of numerical simulation
Resumo:
This paper reports the studies carried out to develop and calibrate the optimal models for the objectives of this work. In particular, quarter bogie model for vehicle, rail-wheel contact with Lagrangian multiplier method, 2D spatial discretization were selected as the optimal decisions. Furthermore, the 3D model of coupled vehicle-track also has been developed to contrast the results obtained in the 2D model. The calculations were carried out in the time domain and envelopes of relevant results were obtained for several track profiles and speed ranges. Distributed elevation irregularities were generated based on power spectral density (PSD) distributions. The results obtained include the wheel-rail contact forces, forces transmitted to the bogie by primary suspension. The latter loads are relevant for the purpose of evaluating the performance of the infrastructure
Resumo:
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct
Resumo:
In this work a methodology for analysing the lateral coupled behavior of large viaducts and high-speed trains is proposed. The finite element method is used for the structure, multibody techniques are applied for vehicles and the interaction between them is established introducing wheel-rail nonlinear contact forces. This methodology is applied for the analysis of the railway viaduct of the R´ıo Barbantino, which is a very long and tall bridge in the north-west spanish high-speed line.
Resumo:
The vertical dynamic actions transmitted by railway vehicles to the ballasted track infrastructure is evaluated taking into account models with different degree of detail. In particular, we have studied this matter from a two-dimensional (2D) finite element model to a fully coupled three-dimensional (3D) multi-body finite element model. The vehicle and track are coupled via a non-linear Hertz contact mechanism. The method of Lagrange multipliers is used for the contact constraint enforcement between wheel and rail. Distributed elevation irregularities are generated based on power spectral density (PSD) distributions which are taken into account for the interaction. The numerical simulations are performed in the time domain, using a direct integration method for solving the transient problem due to the contact nonlinearities. The results obtained include contact forces, forces transmitted to the infrastructure (sleeper) by railpads and envelopes of relevant results for several track irregularities and speed ranges. The main contribution of this work is to identify and discuss coincidences and differences between discrete 2D models and continuum 3D models, as wheel as assessing the validity of evaluating the dynamic loading on the track with simplified 2D models
Resumo:
Characteristics of the impacts su!ered by the fruit on a transfer point of an experimental fruit packing line were analysed. The transfer is made up by two transporting belts at di!erent heights forming an angle of 903. These transfer points are very common in fruit packing lines, in which fruits receive two impacts: the "rst onto the belt base and the second into the lateral plate. Diferent tests were carried out to study the e!ect of transfer height, velocity, belt structure and padding on the acceleration values recorded by an instrumental sphere (IS 100). Results showed that transfer height and belt structure a!ect mainly impact values on the belt base, and padding a!ects mainly impact values registered for lateral contact. The elect of belt velocity in both impacts is less important when compared to the rest of the variables. Additionally, two powered transfer decelerators were tested at the same point with the aim of decreasing impacts su!ered by the fruit. Comparing impacts registered using these decelerators to those analysed in the first part of the study without decelerators, a high reduction of the impact values was observed.