3 resultados para Drug target systems

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanotechnology represents an area of particular promise and significant opportunity across multiple scientific disciplines. Ongoing nanotechnology research ranges from the characterization of nanoparticles and nanomaterials to the analysis and processing of experimental data seeking correlations between nanoparticles and their functionalities and side effects. Due to their special properties, nanoparticles are suitable for cellular-level diagnostics and therapy, offering numerous applications in medicine, e.g. development of biomedical devices, tissue repair, drug delivery systems and biosensors. In nanomedicine, recent studies are producing large amounts of structural and property data, highlighting the role for computational approaches in information management. While in vitro and in vivo assays are expensive, the cost of computing is falling. Furthermore, improvements in the accuracy of computational methods (e.g. data mining, knowledge discovery, modeling and simulation) have enabled effective tools to automate the extraction, management and storage of these vast data volumes. Since this information is widely distributed, one major issue is how to locate and access data where it resides (which also poses data-sharing limitations). The novel discipline of nanoinformatics addresses the information challenges related to nanotechnology research. In this paper, we summarize the needs and challenges in the field and present an overview of extant initiatives and efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present work is to examine the differences between two groups of fencers with different levels of competition, elite and medium level. The timing parameters of the response reaction have been compared together with the kinetic variables which determine the sequence of segmented participation used during the lunge with a change in target during movement. A total of 30 male sword fencers participated, 13 elite and 17 medium level. Two force platforms recorded the horizontal component of the force and the start of the movement. One system filmed the movement in 3D, recording the spatial positions of 11 markers, while another system projected a mobile target over a screen. For synchronisation, an electronic signal enabled all the systems to be started simultaneously. Among the timing parameters of the reaction response, the choice reaction time (CRT) to the target change during the lunge was measured. The results revealed differences between the groups regarding the flight time, horizontal velocity at the end of the acceleration phase, and the length of the lunge, these being higher for the elite group, as well as other variables related to the temporal sequence of movement. No significant differences have been found in the simple reaction time or in CRT. According to the literature, the CRT appears to improve with sports practice, although this factor did not differentiate the elite from medium-level fencers. The coordination of fencing movements, that is, the right technique, constitutes a factor that differentiates elite fencers from medium-level ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While multichannel configurations are well established for non-imaging applications, they have not been used yet for imaging applications. In this paper we present for the first time some of multichannel designs for imaging systems. The multichannel comprises discontinuous optical sections which are called channels. The phase-space representation of the bundle of rays going from the object to the image is discontinuous between channels. This phase-space ray-bundle flow is divided in as many paths as channels there are but it is a single wavefront both at the source and the target. Typically, these multichannel systems are at least formed by three optical surfaces: two of them have discontinuities (either in the shape or in the shape derivative) while the last is a smooth one. Optical surfaces discontinuities cause at the phase space the wave front split in separate paths. The number of discontinuities is the same in the two first surfaces: Each channel is defined by the smooth surfaces in between discontinuities, so the surfaces forming each separate channel are all smooth. Aplanatic multichannel designs are also shown and used to explain the design procedure.