7 resultados para Driving while impaired by alcohol
em Universidad Politécnica de Madrid
Resumo:
The fast-growing power demand by portable electronic devices has promoted the increase of global production of portable PEM fuel cell, a quarter of them consist of direct methanol fuel cell (DMFC) units. These present the advantage of being fuelled directly with a liquid fuel, as well as direct ethanol fuel cells (DEFC) do.
Resumo:
This paper presents the main results of a study on the influence of driving style on fuel consumption and pollutant emissions of diesel passenger car in urban traffic. Driving styles (eco, normal or aggressive) patterns were based on the “eco-driving” criteria. The methodology is based on on-board emission measurements in real urban traffic in the city of Madrid. Five diesel passenger cars, have been tested. Through a statistical analysis, a Dynamic Performance Index was defined for diesel passenger cars. Likewise, the CO, NOX and HC emissions were compared for each driving style for the tested vehicles. Eco-driving reduces by 14% fuel consumption and CO2 emissions, but aggressive driving increase consumption by 40%. Aggressive driving increases NOX emission by more than 40%. CO and HC, show different trends, but being increased in eco-driving style.
Resumo:
The design of shell and spatial structures represents an important challenge even with the use of the modern computer technology.If we concentrate in the concrete shell structures many problems must be faced,such as the conceptual and structural disposition, optimal shape design, analysis, construction methods, details etc. and all these problems are interconnected among them. As an example the shape optimization requires the use of several disciplines like structural analysis, sensitivity analysis, optimization strategies and geometrical design concepts. Similar comments can be applied to other space structures such as steel trusses with single or double shape and tension structures. In relation to the analysis the Finite Element Method appears to be the most extended and versatile technique used in the practice. In the application of this method several issues arise. First the derivation of the pertinent shell theory or alternatively the degenerated 3-D solid approach should be chosen. According to the previous election the suitable FE model has to be adopted i.e. the displacement,stress or mixed formulated element. The good behavior of the shell structures under dead loads that are carried out towards the supports by mainly compressive stresses is impaired by the high imperfection sensitivity usually exhibited by these structures. This last effect is important particularly if large deformation and material nonlinearities of the shell may interact unfavorably, as can be the case for thin reinforced shells. In this respect the study of the stability of the shell represents a compulsory step in the analysis. Therefore there are currently very active fields of research such as the different descriptions of consistent nonlinear shell models given by Simo, Fox and Rifai, Mantzenmiller and Buchter and Ramm among others, the consistent formulation of efficient tangent stiffness as the one presented by Ortiz and Schweizerhof and Wringgers, with application to concrete shells exhibiting creep behavior given by Scordelis and coworkers; and finally the development of numerical techniques needed to trace the nonlinear response of the structure. The objective of this paper is concentrated in the last research aspect i.e. in the presentation of a state-of-the-art on the existing solution techniques for nonlinear analysis of structures. In this presentation the following excellent reviews on this subject will be mainly used.
Resumo:
A 3-year Project started on November 1 2010, financed by the European Commision within the FP-7 Space Program, and aimed at developing an efficient de-orbit system that could be carried on board by future spacecraft launched into LEO, will be presented. The operational system will deploy a thin uninsulated tape-tether to collect electrons as a giant Langmuir probe, using no propellant/no power supply, and generating power on board. This project will involve free-fall tests, and laboratory hypervelocity-impact and tether-current tests, and design/Manufacturing of subsystems: interface elements, electric control and driving module, electron-ejecting plasma contactor, tether-deployment mechanism/end-mass, and tape samples. Preliminary results to be presented involve: i) devising criteria for sizing the three disparate tape dimensions, affecting mass, resistance, current-collection, magnetic self-field, and survivability against debris itself; ii) assessing the dynamical relevance of tether parameters in implementing control laws to limit oscillations in /off the orbital plane, where passive stability may be marginal; iii) deriving a law for bare-tape current from numerical simulations and chamber tests, taking into account ambient magnetic field, ion ram motion, and adiabatic electron trapping; iv) determining requirements on a year-dormant hollow cathode under long times/broad emission-range operation, and trading-off against use of electron thermal emission; v) determining requirements on magnetic components and power semiconductors for a control module that faces high voltage/power operation under mass/volume limitations; vi) assessing strategies to passively deploy a wide conductive tape that needs no retrieval, while avoiding jamming and ending at minimum libration; vii) evaluating the tape structure as regards conductive and dielectric materials, both lengthwise and in its cross-section, in particular to prevent arcing in triple-point junctions.
Resumo:
Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corre- sponding functional connections. We applied beamformer source reconstruction to the resting state MEG record- ings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was ob- tained for each subject, and time series were assigned to each of the regions. The fiber densities between the re- gions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introduc- ing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.
Resumo:
This study evaluates the effect of Lecirelin (Dalmarelin®, Fatro, Italy) diluted in different excipients (benzilic alcohol, benzoic acid and paraben) added to a seminal dose on LH concentrations, progesterone concentrations and ovarian status in rabbits. The in vitro effect on spermatozoa was also tested. A total of 100 multiparous female rabbits were divided into 5 groups, which at the moment of AI, received 0.2 mL (5 μg/dose) intramuscular (im) inoculation of Lecirelin (control) or the same Lecirelin dose administered intravaginally (iv) with the seminal dose alone (Lecirelin group) or with benzilic alcohol (Lecirelin BA group), benzoic acid (Lecirelin BAc group) or parabens (Lecirelin PA group) as an excipient. After 7 days, 10 rabbits per group were euthanized to analyze their ovarian status. In the control group, a high LH peak was detected 30 min post AI, while in the iv groups a slight increase in LH occurred after 120 min. The ovulation and fertility rate was similar in control and Lecirelin groups, while the lowest fertility rate was detected in the Lecirelin BA group. In a second experiment, the semen samples collected from male rabbits were diluted in TALP (control) or mixed with the 5 μg of Lecirelin solutions used in the first experiment. The highest percentage of capacitated sperm (68.3%) was recorded in the Lecirelin PA. The lowest percentages were observed in the Lecirelin BA and BAc groups. In conclusion, the iv administration of Lecirelin represents an alternative method for simplifying rabbit insemination procedures.
Resumo:
The effect of biochar on the soil carbon mineral- ization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on physicochemical properties and CO2 emissions of a sandy loam soil. For this purpose, soil was amended with three different biochars (BI, BII and BIII) at a rate of 8 wt % and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coef- ficients (r 2 ) greater than 0.97. Results show a negative prim- ing effect in the soil after addition of BI and a positive prim- ing effect in the case of soil amended with BII and BIII. These results can be related to different biochar properties such as carbon content, carbon aromaticity, volatile matter, fixed carbon, easily oxidized organic carbon or metal and phenolic substance content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.