5 resultados para Domo de Jirau do Ponciano

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si existe una imagen verdaderamente elocuente para describir a Richard Buckminster Fuller (1895-1983) esta es, sin duda, la que el pintor Boris Artzybasheff (1899-1965) realizó para la portada con la que la revista Time abrió el 10 de enero de 1964. En ella se puede ver como la cabeza de este inventor, ingeniero, poeta y arquitecto se encuentra facetada en cientos de triángulos, formando algo que no es sino una cúpula geodésica, como aquellas que le habían hecho famoso en todo el mundo. Frente a esta identificación que se da en la imagen de Artzybasheff entre Fuller y sus cúpulas, transformando al arquitecto en su propia obra, lo que se pretende realizar en este trabajo de investigación es el camino inverso, penetrar en esa cabeza o, mejor dicho, en esa cúpula que la alberga, a través del estudio de una de las cúpulas más personales que construyera RBF: la que fue su casa en Carbondale, en la que vivió durante toda la década de los años sesenta del pasado siglo, precisamente los mismo años de aquella fantástica portada de Time. El análisis detallado de esta obra nos permitirá acercarnos al centro gravitacional del pensamiento de RBF: la búsqueda de una mayor libertad para el hombre gracias a una arquitectura más sostenible y, por ello, más económica. Una búsqueda que le llevó a crear no sólo una casa, sino todo un mundo propio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto ha tenido por objetivo el estudio de la viabilidad de instalar un sistema de almacenamiento subterráneo de aire comprimido enlazado con una central térmica en España. Dentro de las diversas posibilidades para emplazar el sistema CAES se ha seleccionado el domo salino, por ser la estructura geológica más favorable técnica y económicamente. Con el cometido de encontrar la ubicación más favorable se escogió el domo de Salinas de Añana, y por cercanía geográfica con éste se seleccionó la central térmica de Iberdrola C. T. Pasajes. Una vez elegidos el domo y la central se realizó un estudio de viabilidad técnica y económica de la instalación, empleando estudios geológicos, gravimétricos y económicos. Tras dichos estudios se concluyó que la instalación es posible técnicamente en el domo Salinas de Añana y que se recuperará la inversión a partir del octavo año. ABSTRACT This project has aimed to study the feasibility of installing a system of underground storage of compressed air linked to a thermal plant in Spain. Among the different possibilities to place the CAES system is selected salt dome, as the technically and economically most favorable geological structure. The better dome was Salinas de Añana for its location and Iberdrola C.T. Pasajes was the nearest thermal power plant. Before the dome and thermal power plant were chosen, was performed a technical and economic studies using geological, gravimetric and economic studies. These studies concluded that is possible execute a CAES system in Salinas de Añana dome. The initial investment will pay off the eighth year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la estación de radiación solar e iluminación de alta calidad del International Daylight Measurement Program (IDMP) en Madrid ubicada en la terraza norte de la E.T.S. de Arquitectura de la Universidad Politécnica de Madrid (40º 25’ N, 3º 41’ W) se está realizando un estudio conjunto entre profesores de la ETSAM y de la EUATM sobre la iluminación natural en la Edificación. Desde hace más de un año, se están midiendo iluminancias globales en superficies horizontales, en superficies verticales con las cuatro orientaciones (N, S, E y O) y en superficies inclinadas con distintos ángulos de inclinación mediante un domo semiesférico sobre el que se colocan los sensores fotométricos. Todas estas medidas para los tres tipos de cielo (despejado, parcialmente cubierto y cubierto). También se ha construido un modelo a escala de un local de la ETSAM con la finalidad de medir la iluminación natural simultáneamente en el local y en el modelo reducido. Una vez conocida la viabilidad del modelo se ha estudiado la iluminación natural que tendría dicho local, orientado al norte en la realidad, si estuviese orientado hacia el Sur, el Este o el Oeste. Con todo esto se han realizado varios trabajos de fin de máster del Máster en Técnicas y Sistemas de Edificación de la EUATM y se continúan realizando otros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUMEN Este proyecto ha tenido por objetivo el estudio de la viabilidad de instalar un nuevo almacenamiento subterráneo de gas natural en España. Dentro de las diferentes posibilidades para emplazar el almacenamiento de gas natural se escogió el domo salino por ser la estructura geológica más favorable desde el punto de vista técnico y económico. Una vez escogido el domo salino, el estudio se centró en localizar una ubicación lo más favorable posible siendo el domo salino de Salinas de Añana el elegido. Una vez elegido el domo se procedió al estudio de la viabilidad técnica de la instalación; para ello se utilizaron estudios geológicos, gavimétricos y sondeos. Tras estos estudios se concluyó que en el domo salino de Salinas de Añana es posible la instalación de un almacenamiento subterráneo de gas natural y se procedió a la caracterización del almacenamiento. ABSTRACT This project has considered of installing a new underground natural gas storage in Spain. Among the different possibilities to place a natural gas storage, the salt dome was chosen because it was the geological strucutrure where the project was easier and more interesting economically. After that the study focused on looking for the location as favorable as possible. The best place was the salt dome of Salinas de Añana. Before the salt dome of Salinas de Añana was chosen this project tried to know if the setting-up of a natural gas storage is technical feasibility. For that were used geological studies, gravity studies and drillings. These studies concluded that is possible the setting-up and the study tried to describe technically this storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El interés por los sistemas fotovoltaicos de concentración (CPV) ha resurgido en los últimos años amparado por el desarrollo de células multiunión de muy alta eficiencia basadas en semiconductores de los grupos III-V. Estas células han permitido obtener módulos de concentración con eficiencias que prácticamente duplican las del panel plano y que llegan al 35% en los módulos récord. Esta tesis está dedicada al diseño y la implementación experimental de nuevos conceptos que permitan obtener módulos CPV que no sólo alcancen una eficiencia alta en condiciones estándar sino que, además, sean lo suficientemente tolerantes a errores de montaje, seguimiento, temperatura y variaciones espectrales para que la energía que producen a lo largo del año sea máxima. Una de las primeras cuestiones que se abordan es el diseño de elementos ópticos secundarios para sistemas cuyo primario es una lente de Fresnel y que permiten, para una concentración fija, aumentar el ángulo de aceptancia y la tolerancia del sistema. Varios secundarios reflexivos y refractivos han sido diseñados y analizados mediante trazado de rayos. En particular, utilizando óptica anidólica y basándose en el diseño de una sola etapa conocido como ‘concentrador dieléctrico que funciona por reflexión total interna‘, se ha diseñado, fabricado y caracterizado un secundario con salida cuadrada que, usado junto con una lente de Fresnel, permite alcanzar simultáneamente una elevada eficiencia, concentración y aceptancia. Además, se ha propuesto y prototipado un método alternativo de fabricación para otro de los secundarios, denominado domo, consistente en el sobremoldeo de silicona sobre células solares. Una de las características que impregna todo el trabajo realizado en esta tesis es la aproximación holística en el diseño de módulos CPV, es decir, se ha prestado especial atención al diseño conjunto de la célula y la óptica para garantizar que el sistema total alcance la mayor eficiencia posible. En este sentido muchos sistemas ópticos desarrollados en esta tesis han sido diseñados, caracterizados y optimizados teniendo en cuenta que el ajuste de corriente entre las distintas subcélulas que comprenden la célula multiunión bajo el concentrador sea muy próximo a uno. La capa antirreflectante sobre la célula funciona, en cierto modo, como interfaz entre la óptica y la célula, por lo que se ha diseñado un método de optimización de capas antirreflectantes que considera no sólo el amplio rango de longitudes de onda para el que las células multiunión son sensibles sino también la distribución angular de intensidad sobre la célula creada por la óptica de concentración. Además, la cuestión de la falta de uniformidad también se ha abordado mediante la comparación de las distribuciones espectrales y espaciales de irradiancia que crean diferentes ópticas (simuladas mediante trazado de rayos y fotografiadas) y las pérdidas de eficiencia que experimentan las células iluminadas por dichas ópticas de concentración medidas experimentalmente. El efecto de la temperatura en la óptica de concentración también ha sido objeto de estudio de esta tesis. En particular, mediante simulaciones de elementos finitos se han dado los primeros pasos para el análisis de las deformaciones que sufren los dientes de las lentes de Fresnel híbridas (vidrio-silicona), así como el cambio de índice de refracción con la temperatura y la influencia de ambos efectos sobre el funcionamiento de los sistemas. Se ha implementado un modelo que tiene por objeto considerar las variaciones ambientales, principalmente temperatura y contenido espectral de la radiación directa, así como las sensibilidades térmica y espectral de los sistemas CPV, con el fin de maximizar la energía producida por un módulo de concentración a lo largo de un año en un emplazamiento determinado. Los capítulos 5 y 6 de este libro están dedicados al diseño, fabricación y caracterización de un nuevo concepto de módulo fotovoltaico denominado FluidReflex y basado en una única etapa reflexiva con dieléctrico fluido. En este nuevo concepto la presencia del fluido aporta algunas ventajas significativas como son: un aumento del producto concentración por aceptancia (CAP, en sus siglas en inglés) alcanzable al rodear la célula con un medio cuyo índice de refracción es mayor que uno, una mejora de la eficiencia óptica al disminuir las pérdidas por reflexión de Fresnel en varias interfaces, una mejora de la disipación térmica ya que el calor que se concentra junto a la célula se trasmite por convección natural y conducción en el fluido y un aislamiento eléctrico mejorado. Mediante la construcción y medida de varios prototipos de unidad elemental se ha demostrado que no existe ninguna razón fundamental que impida la implementación práctica del concepto teórico alcanzando una elevada eficiencia. Se ha realizado un análisis de fluidos candidatos probando la existencia de al menos dos de ellos que cumplen todos los requisitos (en particular el de estabilidad bajo condiciones de luz concentrada) para formar parte del sistema de concentración FluidReflex. Por ´ultimo, se han diseñado, fabricado y caracterizado varios prototipos preindustriales de módulos FluidReflex para lo cual ha sido necesario optimizar el proceso de fabricación de la óptica multicavidad a fin de mantener el buen comportamiento óptico obtenido en la fabricación de la unidad elemental. Los distintos prototipos han sido medidos, tanto en el laboratorio como bajo el sol real, analizando el ajuste de corriente de la célula iluminada por el concentrador FluidReflex bajo diferentes distribuciones espectrales de la radiación incidente así como el excelente comportamiento térmico del módulo. ABSTRACT A renewed interest in concentrating photovoltaic (CPV) systems has emerged in recent years encouraged by the development of high-efficiency multijunction solar cells based in IIIV semiconductors that have led to CPV module efficiencies which practically double that of flat panel PV and which reach 35% for record modules. This thesis is devoted to the design and experimental implementation of new concepts for obtaining CPV modules that not only achieve high efficiency under standard conditions but also have such a wide tolerance to assembly errors, tracking, temperature and spectral variations, that the energy generated by them throughout the year is maximized. One of the first addressed issues is the design of secondary optical elements whose primary optics is a Fresnel lens and which, for a fixed concentration, allow an increased acceptance angle and tolerance of the system. Several reflective and refractive secondaries have been designed and analyzed using ray tracing. In particular, using nonimaging optics and based on the single-stage design known as ‘dielectric totally internally reflecting concentrator’, a secondary with square output has been designed, fabricated and characterized. Used together with a Fresnel lens, the secondary can simultaneously achieve high efficiency, concentration and acceptance. Furthermore, an alternative method has been proposed and prototyped for the fabrication of the secondary named dome. The optics is manufactured by direct overmolding of silicone over the solar cells. One characteristic that permeates all the work done in this thesis is the holistic approach in the design of CPV modules, meaning that special attention has been paid to the joint design of the solar cell and the optics to ensure that the total system achieves the highest attainable efficiency. In this regard, many optical systems developed in the thesis have been designed, characterized and optimized considering that the current matching among the subcells within the multijunction solar cell beneath the optics must be close to one. Antireflective coating over the cell acts, somehow, as an interface between the optics and the cell. Consequently, a method has been designed to optimize antireflective coatings that takes into account not only the broad wavelength range that multijunction solar cells are sensitive to but also the angular intensity distribution created by the concentrating optics. In addition, the issue of non-uniformity has also been addressed by comparing the spectral and spatial distributions of irradiance created by different optics (simulated by ray tracing and photographed) and the efficiency losses experienced by cells illuminated by those concentrating optics experimentally determined. The effect of temperature on the concentrating optics has also been studied in this thesis. In particular, finite element simulations have been use to analyze the deformations experienced by the facets of hybrid (silicon-glass) Fresnel lenses, the change of refractive index with temperature and the influence of both effects on the system performance. A model has been implemented which take into consideration atmospheric variations, mainly temperature and spectral content of the direct normal irradiance, as well as thermal and spectral sensitivities of systems, with the aim of maximizing the energy harvested by a CPV module throughout the year in a particular location. Chapters 5 and 6 of this book are devoted to the design, fabrication, and characterization of a new concentrator concept named FluidReflex and based on a single-stage reflective optics with fluid dielectric. In this new concept, the presence of the fluid provides some significant advantages such as: an increased concentration acceptance angle product (CAP) achievable by surrounding the cell with a medium whose refractive index is greater than one, an improvement of the optical efficiency by reducing losses due to Fresnel reflection at several interfaces, an improvement in heat dissipation as the heat concentrated near the cell is transmitted by natural convection and conduction in the fluid, and an improved electrical insulation. By fabricating and characterizing several elementary-unit prototypes it was shown that there is no fundamental reason that prevents the practical implementation of this theoretical concept reaching high efficiency. Several fluid candidates were investigated proving the existence of at least to fluids that meet all the requirements (including the stability under concentrated light) to become part of the FluidReflex concentrator. Finally, several pre-industrial FluidReflex module prototypes have been designed and fabricated. An optimization process for the manufacturing of the multicavity optics was necessary to attain such an optics quality as the one achieved by the single unit. The module prototypes have been measured, both indoors and outdoors, analyzing the current matching of the solar cells beneath the concentrator for different spectral distribution of the incident irradiance. Additionally, the module showed an excellent thermal performance.