27 resultados para Distributed data access
em Universidad Politécnica de Madrid
Resumo:
The manipulation and handling of an ever increasing volume of data by current data-intensive applications require novel techniques for e?cient data management. Despite recent advances in every aspect of data management (storage, access, querying, analysis, mining), future applications are expected to scale to even higher degrees, not only in terms of volumes of data handled but also in terms of users and resources, often making use of multiple, pre-existing autonomous, distributed or heterogeneous resources.
Resumo:
Work on distributed data management commenced shortly after the introduction of the relational model in the mid-1970's. 1970's and 1980's were very active periods for the development of distributed relational database technology, and claims were made that in the following ten years centralized databases will be an “antique curiosity” and most organizations will move toward distributed database managers [1]. That prediction has certainly become true, and all commercial DBMSs today are distributed.
Resumo:
Ontology-Based Data Access (OBDA) permite el acceso a diferentes tipos de fuentes de datos (tradicionalmente bases de datos) usando un modelo más abstracto proporcionado por una ontología. La reescritura de consultas (query rewriting) usa una ontología para reescribir una consulta en una consulta reescrita que puede ser evaluada en la fuente de datos. Las consultas reescritas recuperan las respuestas que están implicadas por la combinación de los datos explicitamente almacenados en la fuente de datos, la consulta original y la ontología. Al trabajar sólo sobre las queries, la reescritura de consultas permite OBDA sobre cualquier fuente de datos que puede ser consultada, independientemente de las posibilidades para modificarla. Sin embargo, producir y evaluar las consultas reescritas son procesos costosos que suelen volverse más complejos conforme la expresividad y tamaño de la ontología y las consultas aumentan. En esta tesis exploramos distintas optimizaciones que peuden ser realizadas tanto en el proceso de reescritura como en las consultas reescritas para mejorar la aplicabilidad de OBDA en contextos realistas. Nuestra contribución técnica principal es un sistema de reescritura de consultas que implementa las optimizaciones presentadas en esta tesis. Estas optimizaciones son las contribuciones principales de la tesis y se pueden agrupar en tres grupos diferentes: -optimizaciones que se pueden aplicar al considerar los predicados en la ontología que no están realmente mapeados con las fuentes de datos. -optimizaciones en ingeniería que se pueden aplicar al manejar el proceso de reescritura de consultas en una forma que permite reducir la carga computacional del proceso de generación de consultas reescritas. -optimizaciones que se pueden aplicar al considerar metainformación adicional acerca de las características de la ABox. En esta tesis proporcionamos demostraciones formales acerca de la corrección y completitud de las optimizaciones propuestas, y una evaluación empírica acerca del impacto de estas optimizaciones. Como contribución adicional, parte de este enfoque empírico, proponemos un banco de pruebas (benchmark) para la evaluación de los sistemas de reescritura de consultas. Adicionalmente, proporcionamos algunas directrices para la creación y expansión de esta clase de bancos de pruebas. ABSTRACT Ontology-Based Data Access (OBDA) allows accessing different kinds of data sources (traditionally databases) using a more abstract model provided by an ontology. Query rewriting uses such ontology to rewrite a query into a rewritten query that can be evaluated on the data source. The rewritten queries retrieve the answers that are entailed by the combination of the data explicitly stored in the data source, the original query and the ontology. However, producing and evaluating the rewritten queries are both costly processes that become generally more complex as the expressiveness and size of the ontology and queries increase. In this thesis we explore several optimisations that can be performed both in the rewriting process and in the rewritten queries to improve the applicability of OBDA in real contexts. Our main technical contribution is a query rewriting system that implements the optimisations presented in this thesis. These optimisations are the core contributions of the thesis and can be grouped into three different groups: -optimisations that can be applied when considering the predicates in the ontology that are actually mapped to the data sources. -engineering optimisations that can be applied by handling the process of query rewriting in a way that permits to reduce the computational load of the query generation process. -optimisations that can be applied when considering additional metainformation about the characteristics of the ABox. In this thesis we provide formal proofs for the correctness of the proposed optimisations, and an empirical evaluation about the impact of the optimisations. As an additional contribution, part of this empirical approach, we propose a benchmark for the evaluation of query rewriting systems. We also provide some guidelines for the creation and expansion of this kind of benchmarks.
Resumo:
Sensor networks are increasingly becoming one of the main sources of Big Data on the Web. However, the observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse these data for other purposes than those for which they were originally set up. In this thesis we address these challenges, considering how we can transform streaming raw data to rich ontology-based information that is accessible through continuous queries for streaming data. Our main contribution is an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. We introduce novel query rewriting and data translation techniques that rely on mapping definitions relating streaming data models to ontological concepts. Specific contributions include: • The syntax and semantics of the SPARQLStream query language for ontologybased data access, and a query rewriting approach for transforming SPARQLStream queries into streaming algebra expressions. • The design of an ontology-based streaming data access engine that can internally reuse an existing data stream engine, complex event processor or sensor middleware, using R2RML mappings for defining relationships between streaming data models and ontology concepts. Concerning the sensor metadata of such streaming data sources, we have investigated how we can use raw measurements to characterize streaming data, producing enriched data descriptions in terms of ontological models. Our specific contributions are: • A representation of sensor data time series that captures gradient information that is useful to characterize types of sensor data. • A method for classifying sensor data time series and determining the type of data, using data mining techniques, and a method for extracting semantic sensor metadata features from the time series.
Resumo:
EPICS (Experimental Physics and Industrial Control System) lies in a set of software tools and applications which provide a software infrastructure for building distributed data acquisition and control systems. Currently there is an increase in use of such systems in large Physics experiments like ITER, ESS, and FREIA. In these experiments, advanced data acquisition systems using FPGA-based technology like FlexRIO are more frequently been used. The particular case of ITER (International Thermonuclear Experimental Reactor), the instrumentation and control system is supported by CCS (CODAC Core System), based on RHEL (Red Hat Enterprise Linux) operating system, and by the plant design specifications in which every CCS element is defined either hardware, firmware or software. In this degree final project the methodology proposed in Implementation of Intelligent Data Acquisition Systems for Fusion Experiments using EPICS and FlexRIO Technology Sanz et al. [1] is used. The final objective is to provide a document describing the fulfilled process and the source code of the data acquisition system accomplished. The use of the proposed methodology leads to have two diferent stages. The first one consists of the hardware modelling with graphic design tools like LabVIEWFPGA which later will be implemented in the FlexRIO device. In the next stage the design cycle is completed creating an EPICS controller that manages the device using a generic device support layer named NDS (Nominal Device Support). This layer integrates the data acquisition system developed into CCS (Control, data access and communication Core System) as an EPICS interface to the system. The use of FlexRIO technology drives the use of LabVIEW and LabVIEW FPGA respectively. RESUMEN. EPICS (Experimental Physics and Industrial Control System) es un conjunto de herramientas software utilizadas para el desarrollo e implementación de sistemas de adquisición de datos y control distribuidos. Cada vez es más utilizado para entornos de experimentación física a gran escala como ITER, ESS y FREIA entre otros. En estos experimentos se están empezando a utilizar sistemas de adquisición de datos avanzados que usan tecnología basada en FPGA como FlexRIO. En el caso particular de ITER, el sistema de instrumentación y control adoptado se basa en el uso de la herramienta CCS (CODAC Core System) basado en el sistema operativo RHEL (Red Hat) y en las especificaciones del diseño del sistema de planta, en la cual define todos los elementos integrantes del CCS, tanto software como firmware y hardware. En este proyecto utiliza la metodología propuesta para la implementación de sistemas de adquisición de datos inteligente basada en EPICS y FlexRIO. Se desea generar una serie de ejemplos que cubran dicho ciclo de diseño completo y que serían propuestos como casos de uso de dichas tecnologías. Se proporcionará un documento en el que se describa el trabajo realizado así como el código fuente del sistema de adquisición. La metodología adoptada consta de dos etapas diferenciadas. En la primera de ellas se modela el hardware y se sintetiza en el dispositivo FlexRIO utilizando LabVIEW FPGA. Posteriormente se completa el ciclo de diseño creando un controlador EPICS que maneja cada dispositivo creado utilizando una capa software genérica de manejo de dispositivos que se denomina NDS (Nominal Device Support). Esta capa integra la solución en CCS realizando la interfaz con la capa EPICS del sistema. El uso de la tecnología FlexRIO conlleva el uso del lenguaje de programación y descripción hardware LabVIEW y LabVIEW FPGA respectivamente.
Resumo:
Data grid services have been used to deal with the increasing needs of applications in terms of data volume and throughput. The large scale, heterogeneity and dynamism of grid environments often make management and tuning of these data services very complex. Furthermore, current high-performance I/O approaches are characterized by their high complexity and specific features that usually require specialized administrator skills. Autonomic computing can help manage this complexity. The present paper describes an autonomic subsystem intended to provide self-management features aimed at efficiently reducing the I/O problem in a grid environment, thereby enhancing the quality of service (QoS) of data access and storage services in the grid. Our proposal takes into account that data produced in an I/O system is not usually immediately required. Therefore, performance improvements are related not only to current but also to any future I/O access, as the actual data access usually occurs later on. Nevertheless, the exact time of the next I/O operations is unknown. Thus, our approach proposes a long-term prediction designed to forecast the future workload of grid components. This enables the autonomic subsystem to determine the optimal data placement to improve both current and future I/O operations.
Resumo:
In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.
Resumo:
The Internet of Things (IoT) is growing at a fast pace with new devices getting connected all the time. A new emerging group of these devices are the wearable devices, and Wireless Sensor Networks are a good way to integrate them in the IoT concept and bring new experiences to the daily life activities. In this paper we present an everyday life application involving a WSN as the base of a novel context-awareness sports scenario where physiological parameters are measured and sent to the WSN by wearable devices. Applications with several hardware components introduce the problem of heterogeneity in the network. In order to integrate different hardware platforms and to introduce a service-oriented semantic middleware solution into a single application, we propose the use of an Enterprise Service Bus (ESB) as a bridge for guaranteeing interoperability and integration of the different environments, thus introducing a semantic added value needed in the world of IoT-based systems. This approach places all the data acquired (e.g., via Internet data access) at application developers disposal, opening the system to new user applications. The user can then access the data through a wide variety of devices (smartphones, tablets, computers) and Operating Systems (Android, iOS, Windows, Linux, etc.).
Resumo:
Many data streaming applications produces massive amounts of data that must be processed in a distributed fashion due to the resource limitation of a single machine. We propose a distributed data stream clustering protocol. Theoretical analysis shows preliminary results about the quality of discovered clustering. In addition, we present results about the ability to reduce the time complexity respect to the centralized approach.
Resumo:
Vivimos en la era de la información y del internet, tenemos la necesidad cada vez mayor de conseguir y compartir la información que existe. Esta necesidad se da en todos los ámbitos existentes pero con más ahínco probablemente sea en el área de la medicina, razón por la cual se llevan a cabo muchas investigaciones de distinta índole, lo cual ha llevado a generar un cantidad inimaginable de información y esta su vez muy heterogénea, haciendo cada vez más difícil unificarla y sacar conocimiento o valor agregado. Por lo cual se han llevado a cabo distintas investigaciones para dar solución a este problema, quizás la más importante y con más crecimiento es la búsqueda a partir de modelos de ontologías mediante el uso de sistemas que puedan consultarla. Este trabajo de Fin de Master hace hincapié es la generación de las consultas para poder acceder a la información que se encuentra de manera distribuida en distintos sitios y de manera heterogénea, mediante el uso de una API que genera el código SPARQL necesario. La API que se uso fue creada por el grupo de informática biomédica. También se buscó una manera eficiente de publicar esta API para su futuro uso en el proyecto p-medicine, por lo cual se creó un servicio RESTful para permitir generar las consultas deseadas desde cualquier plataforma, haciendo en esto caso más accesible y universal. Se le dio también una interfaz WEB a la API que permitiera hacer uso de la misma de una manera más amigable para el usuario. ---ABSTRACT---We live in the age of information and Internet so we have the need to consult and share the info that exists. This need comes is in every scope of our lives, probably one of the more important is the medicine, because it is the knowledge area that treats diseases and it tries to extents the live of the human beings. For that reason there have been many different researches generating huge amounts of heterogeneous and distributed information around the globe and making the data more difficult to consult. Consequently there have been many researches to look for an answer about to solve the problem of searching heterogeneous and distributed data, perhaps the more important if the one that use ontological models. This work is about the generation of the query statement based on the mapping API created by the biomedical informatics group. At the same time the project looks for the best way to publish and make available the API for its use in the p-medicine project, for that reason a RESTful API was made to allow the generation of consults from within the platform, becoming much more accessible and universal available. A Web interface was also made to the API, to let access to the final user in a friendly
Resumo:
In this paper, the authors introduce a novel mechanism for data management in a middleware for smart home control, where a relational database and semantic ontology storage are used at the same time in a Data Warehouse. An annotation system has been designed for instructing the storage format and location, registering new ontology concepts and most importantly, guaranteeing the Data Consistency between the two storage methods. For easing the data persistence process, the Data Access Object (DAO) pattern is applied and optimized to enhance the Data Consistency assurance. Finally, this novel mechanism provides an easy manner for the development of applications and their integration with BATMP. Finally, an application named "Parameter Monitoring Service" is given as an example for assessing the feasibility of the system.
Resumo:
The efficiency of the Iberian Energy Derivatives Market in its first five and a half years is assessed in terms of volume, open interest and price. The continuous market shows steady liquidity growth. Its volume is strongly correlated to that of the Over The Counter (OTC) market, the amount of market makers, the enrolment of financial agents and generation companies belonging to the integrated group of last resort suppliers, and the OTC cleared volume in its clearing house. The hedging efficiency, measured through the ratio between the final open interest and the cleared volume, shows the lowest values for the Spanish base load futures as they are the most liquid contracts. The ex-post forward risk premium has diminished due to the learning curve and the effect of the fixed price retributing the indigenous coal fired generation. This market is quite less developed than the European leaders headquartered in Norway and Germany. Enrolment of more traders, mainly international energy companies, financial agents, energy intensive industries and renewable generation companies is desired. Market monitoring reports by the market operator providing post-trade transparency, OTC data access by the energy regulator, and assessment of the regulatory risk can contribute to efficiency gains.
Resumo:
Sensor networks are increasingly being deployed in the environment for many different purposes. The observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse this data, for other purposes than those for which they were originally set up. The authors propose an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. In this article, the authors describe the theoretical foundations and technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations through SPARQL extensions, using query rewriting and data translation techniques according to mapping languages, and managing both pull and push delivery modes.
Resumo:
El presente proyecto fin de carrera, realizado por el ingeniero técnico en telecomunicaciones Pedro M. Matamala Lucas, es la fase final de desarrollo de un proyecto de mayor magnitud correspondiente al software de vídeo forense SAVID. El propósito del proyecto en su totalidad es la creación de una herramienta informática capacitada para realizar el análisis de ficheros de vídeo, codificados y comprimidos por el sistema DV –Digital Video-. El objetivo del análisis, es aportar información acerca de si la cinta magnética presenta indicios de haber sido manipulada con una edición posterior a su grabación original, además, de mostrar al usuario otros datos de interés como las especificaciones técnicas de la señal de vídeo y audio. Por lo tanto, se facilitará al usuario, analista de vídeo forense, información que le ayude a valorar la originalidad del contenido del soporte que es sujeto del análisis. El objetivo específico de esta fase final, es la creación de la interfaz de usuario del software, que informa tanto del código binario de los sectores significativos, como de su interpretación tras el análisis. También permitirá al usuario el reporte de los resultados, además de otras funcionalidades que le permitan la navegación por los sectores del código que han sido modificados como efecto colateral de la edición de la cinta magnética original. Otro objetivo importante del proyecto ha sido la investigación de metodologías y técnicas de desarrollo de software para su posterior implementación, buscando con esto, una mayor eficiencia en la gestión del tiempo y una mayor calidad de software con el fin de garantizar su evolución y sostenibilidad en el futuro. Se ha hecho hincapié en las metodologías ágiles que han ido ganando relevancia en el sector de las tecnologías de la información en las últimas décadas, sustituyendo a metodologías clásicas como el desarrollo en cascada. Su flexibilidad durante el ciclo de vida del software, permite obtener mejores resultados cuando las especificaciones no están del todo definidas, ajustándose de este modo a las condiciones del proyecto. Resumiendo las especificaciones técnicas del software, C++ es el lenguaje de programación orientado a objetos con el que se ha desarrollado, utilizándose la tecnología MFC -Microsoft Foundation Classes- para la implementación. Es un proyecto MFC de tipo cuadro de dialogo,creado, compilado y publicado, con la herramienta de desarrollo integrado Microsoft Visual Studio 2010. La arquitectura con la que se ha estructurado es la arquetípica de tres capas, compuesta por la interfaz de usuario, capa de negocio y capa de acceso a datos. Se ha visto necesario configurar el proyecto con compatibilidad con CLR –Common Languages Runtime- para poder implementar la funcionalidad de creación de reportes. Acompañando a la aplicación informática, se presenta la memoria del proyecto y sus anexos correspondientes a los documentos EDRF –Especificaciones Detalladas de Requisitos funcionales-, EIU –Especificaciones de Interfaz de Usuario , DT -Diseño Técnico- y Guía de Usuario. SUMMARY. This dissertation, carried out by the telecommunications engineer Pedro M. Matamala Lucas, is in its final stage and is part of a larger project for the software of forensic video called SAVID. The purpose of the entire project is the creation of a software tool capable of analyzing video files that are coded and compressed by the DV -Digital Video- System. The objective of the analysis is to provide information on whether the magnetic tape shows signs of having been tampered with after the editing of the original recording, and also to show the user other relevant data and technical specifications of the video signal and audio. Therefore the user, forensic video analyst, will have information to help assess the originality of the content of the media that is subject to analysis. The specific objective of this final phase is the creation of the user interface of the software that provides information about the binary code of the significant sectors and also its interpretation after analysis. It will also allow the user to report the results, and other features that will allow browsing through the sections of the code that have been modified as a secondary effect of the original magnetic tape being tampered. Another important objective of the project is the investigation of methodologies and software development techniques to be used in deployment, with the aim of greater efficiency in time management and enhanced software quality in order to ensure its development and maintenance in the future. Agile methodologies, which have become important in the field of information technology in recent decades, have been used during the execution of the project, replacing classical methodologies such as Waterfall Development. The flexibility, as the result of using by agile methodologies, during the software life cycle, produces better results when the specifications are not fully defined, thus conforming to the initial conditions of the project. Summarizing the software technical specifications, C + + the programming language – which is object oriented and has been developed using technology MFC- Microsoft Foundation Classes for implementation. It is a project type dialog box, created, compiled and released with the integrated development tool Microsoft Visual Studio 2010. The architecture is structured in three layers: the user interface, business layer and data access layer. It has been necessary to configure the project with the support CLR -Common Languages Runtime – in order to implement the reporting functionality. The software application is submitted with the project report and its annexes to the following documents: Functional Requirements Specifications - Detailed User Interface Specifications, Technical Design and User Guide.
Resumo:
Query rewriting is one of the fundamental steps in ontologybased data access (OBDA) approaches. It takes as inputs an ontology and a query written according to that ontology, and produces as an output a set of queries that should be evaluated to account for the inferences that should be considered for that query and ontology. Different query rewriting systems give support to different ontology languages with varying expressiveness, and the rewritten queries obtained as an output do also vary in expressiveness. This heterogeneity has traditionally made it difficult to compare different approaches, and the area lacks in general commonly agreed benchmarks that could be used not only for such comparisons but also for improving OBDA support. In this paper we compile data, dimensions and measurements that have been used to evaluate some of the most recent systems, we analyse and characterise these assets, and provide a unified set of them that could be used as a starting point towards a more systematic benchmarking process for such systems. Finally, we apply this initial benchmark with some of the most relevant OBDA approaches in the state of the art.