10 resultados para Distance spectrum technique
em Universidad Politécnica de Madrid
Resumo:
This paper presents the security evaluation, energy consumption optimization, and spectrum scarcity analysis of artificial noise techniques to increase physical-layer security in Cognitive Wireless Sensor Networks (CWSNs). These techniques introduce noise into the spectrum in order to hide real information. Nevertheless, they directly affect two important parameters in Cognitive Wireless Sensor Networks (CWSNs), energy consumption and spectrum utilization. Both are affected because the number of packets transmitted by the network and the active period of the nodes increase. Security evaluation demonstrates that these techniques are effective against eavesdropper attacks, but also optimization allows for the implementation of these approaches in low-resource networks such as Cognitive Wireless Sensor Networks. In this work, the scenario is formally modeled and the optimization according to the simulation results and the impact analysis over the frequency spectrum are presented.
Resumo:
A new method for measuring the linewidth enhancement factor (α-parameter) of semiconductor lasers is proposed and discussed. The method itself provides an estimation of the measurement error, thus self-validating the entire procedure. The α-parameter is obtained from the temporal profile and the instantaneous frequency (chirp) of the pulses generated by gain switching. The time resolved chirp is measured with a polarization based optical differentiator. The accuracy of the obtained values of the α-parameter is estimated from the comparison between the directly measured pulse spectrum and the spectrum reconstructed from the chirp and the temporal profile of the pulse. The method is applied to a VCSEL and to a DFB laser emitting around 1550 nm at different temperatures, obtaining a measurement error lower than ± 8%.
Resumo:
The development of a novel optical design for the high concentration photovoltaics (HPCV) nonimaging concentrator (>500x) that utilizes a built-in spectrum splitting concept is presented. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it. The POE and SOE perform Köhler integration to produce light homogenization on the receiver. The system uses a combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-PointContact (BPC) silicon cell for efficient spectral utilization, and an external confinement technique for recovering the 3J cell’s reflection. A design target of an “equivalent” cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level greater than 500X with a wide acceptance angle of ±1º. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%
Resumo:
A Digital Elevation Model (DEM) provides the information basis used for many geographic applications such as topographic and geomorphologic studies, landscape through GIS (Geographic Information Systems) among others. The DEM capacity to represent Earth?s surface depends on the surface roughness and the resolution used. Each DEM pixel depends on the scale used characterized by two variables: resolution and extension of the area studied. DEMs can vary in resolution and accuracy by the production method, although there are statistical characteristics that keep constant or very similar in a wide range of scales. Based on this property, several techniques have been applied to characterize DEM through multiscale analysis directly related to fractal geometry: multifractal spectrum and the structure function. The comparison of the results by both methods is discussed. The study area is represented by a 1024 x 1024 data matrix obtained from a DEM with a resolution of 10 x 10 m each point, which correspond with a region known as ?Monte de El Pardo? a property of Spanish National Heritage (Patrimonio Nacional Español) of 15820 Ha located to a short distance from the center of Madrid. Manzanares River goes through this area from North to South. In the southern area a reservoir is found with a capacity of 43 hm3, with an altitude of 603.3 m till 632 m when it is at the highest capacity. In the middle of the reservoir the minimum altitude of this area is achieved.
Resumo:
The penalty corner is one of the most important goal plays in field hockey. The drag-flick is used less by women than men in a penalty corner. The aim of this study was to describe training-induced changes in the drag-flick technique in female field hockey players. Four female players participated in the study. The VICON optoelectronic system (Oxford Metrics, Oxford, UK) measured the kinematic parameters of the drag-flick with six cameras sampling at 250 Hz, prior to and after training. Fifteen shots were captured for each subject. A Wilcoxon test assessed the differences between pre-training and post-training parameters. Two players received specific training twice a week for 8 weeks; the other two players did not train. The proposed drills improved the position of the stick at the beginning of the shot (p<0.05), the total distance of the shot (p<0.05)and the rotation radius at ball release (p<0.01). It was noted that all players had lost speed of the previous run. Further studies should include a larger sample, in order to provide more information on field hockey performance.
Resumo:
In this paper, we describe new results and improvements to a lan-guage identification (LID) system based on PPRLM previously introduced in [1] and [2]. In this case, we use as parallel phone recognizers the ones provided by the Brno University of Technology for Czech, Hungarian, and Russian lan-guages, and instead of using traditional n-gram language models we use a lan-guage model that is created using a ranking with the most frequent and discrim-inative n-grams. In this language model approach, the distance between the ranking for the input sentence and the ranking for each language is computed, based on the difference in relative positions for each n-gram. This approach is able to model reliably longer span information than in traditional language models obtaining more reliable estimations. We also describe the modifications that we have being introducing along the time to the original ranking technique, e.g., different discriminative formulas to establish the ranking, variations of the template size, the suppression of repeated consecutive phones, and a new clus-tering technique for the ranking scores. Results show that this technique pro-vides a 12.9% relative improvement over PPRLM. Finally, we also describe re-sults where the traditional PPRLM and our ranking technique are combined.
Resumo:
El presente proyecto de fin de carrera describe y analiza el estudio integral del efecto de las vibraciones producidas por voladuras superficiales realizadas en el proyecto del “Tercer Juego de Esclusas” ejecutado para la Expansión del Canal de Panamá. Se recopilan un total de 53 registros, data generada por el monitoreo de 7 sismógrafos en 10 voladuras de producción realizadas en el año 2010. El fenómeno vibratorio tiene dos parámetros fundamentales, la velocidad pico-partícula (PPV) y la frecuencia dominante, los cuales caracterizan cuan dañino puede ser éste frente a su influencia sobre las estructuras civiles; por ello, se pretende caracterizarlas y fundamentalmente predecirlas, lo que permitirá su debido control. En función a lo expuesto, el estudio realizado consta de dos partes, la primera describe el comportamiento del terreno mediante la estimación de la ley de atenuación de la velocidad pico-partícula a través del uso de la regresión lineal por mínimos cuadrados; la segunda detalla un procedimiento validable para la predicción de la frecuencia dominante y del pseudo-espectro de respuesta de velocidad (PVRS) basada en la teoría de Newmark & Hall. Se ha obtenido: (i) la ley de atenuación del terreno para distintos grados de fiabilidad, (ii) herramientas de diseño de voladuras basadas en la relación de carga – distancia, (iii) la demostración que los valores de PPV se ajustan a una distribución log-normal, (iv) el mapa de isolíneas de PPV para el área de estudio, (v) una técnica detallada y válida para la predicción de la frecuencia dominante y del espectro de respuesta, (vi) formulaciones matemáticas de los factores de amplificación para el desplazamiento, velocidad y aceleración, (vii) mapa de isolíneas de amplificación para el área de estudio. A partir de los resultados obtenidos se proporciona información útil para su uso en el diseño y control de las voladuras posteriores del proyecto. ABSTRACT This project work describes and analyzes the comprehensive study of the effect of the vibrations produced by surface blasting carried out in the "Third Set of Locks" project executed for the expansion of the Panama Canal. A total of 53 records were collected, with the data generated by the monitoring of 7 seismographs in 10 production blasts carried out in 2010. The vibratory phenomenon has two fundamental parameters, the peak-particle velocity (PPV) and the dominant frequency, which characterize how damaging this can be compared to their influence on structures, which is why this is intended to characterize and predict fundamentally, that which allows proper control. Based on the above, the study consists of two parts; the first describes the behavior of the terrain by estimating the attenuation law for peak-particle velocity by using the ordinary least squares regression analysis, the second details a validable procedure for the prediction of the dominant frequency and pseudo-velocity response spectrum (PVRS) based on the theory of Newmark & Hall. The following have been obtained: (i) the attenuation law of the terrain for different degrees of reliability, (ii) blast design tools based on charge-distance ratio, (iii) the demonstration that the values of PPV conform to a log-normal distribution, (iv) the map of isolines of PPV for the area of study (v) detailed and valid technique for predicting the dominant frequency response spectrum, (vi) mathematical formulations of the amplification factors for displacement, velocity and acceleration, (vii) amplification of isolines map for the study area. From the results obtained, the study provides useful information for use in the design and control of blasting for subsequent projects.
Resumo:
A compact system based on time-resolved diffuse reflectance spectroscopy (TDRS) has been developed to measure internal fruit quality parameters and has been applied to the non-destructive estimation of firmness, sugar content and acidity of kiwifruits. This new optical technique, developed in medical applications and related areas, provides a complete optical characterisation of a diffusive sample as it estimates at the same time and independently the light absorption inside the tissues and the scattering across them. The working principle of the technique is the analysis of the attenuation and broadening of the time-distribution of the remitted light, and the correct interpretation with a proper theoretical model. This main advantage compared to conventional optical techniques (which are only able to register the global attenuation spectrum) added to the compact, portable prototype developed along a three-year work opens the possibilities of this new measurement method in the food industry.
Resumo:
The excitons in the orthorhombic phase of the perovskite CH3NH3PbI3 are studied using the effective mass approximation. The electron–hole interaction is screened by a distance-dependent dielectric function, as described by the Haken potential or the Pollmann–Büttner potential. The energy spectrum and the eigenfunctions are calculated for both cases. The results show that the Pollmann–Büttner model, using the corresponding parameters obtained from ab initio calculations, provides better agreement with the experimental results.
Resumo:
A method to reconstruct the excitation coefficients of wide-slot arrays from near-field data is presented. The plane wave spectrum (PWS) is used for reconstruction, and the shape of the field distribution on a wide slot is considered in the calculation of the PWS. The proposed algorithm is validated through the reconstruction of the excitation coefficients of a wide-slot array with element failures from the simulated nearfield data. The element failures are clearly located by the proposed algorithm