8 resultados para Disease damage assessment

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The city of Lorca (Spain) was hit on May 11th 2011 by two consecutive earthquakes with 4.6 and 5.2 Mw respectively, causing casualties and important damage in buildings. Lorca is located in the south-east region of Spain and settled on the trace of the Murcia-Totana-Lorca fault. Although the magnitudes of these ground motions were not severe, the damage observed was considerable over a great amount of buildings. More than 300 of them have been demolished and many others are being retrofitted. This paper reports a field study on the damage caused by these earthquakes. The observed damage is related with the structural typology. Further, prototypes of the damaged buildings are idealized with nonlinear numerical models and their seismic behavior and proneness to damage concentration is further investigated through dynamic response analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary algorithms are suitable to solve damage identification problems in a multiobjective context. However, the performance of these methods can deteriorate quickly with increasing noise intensities originating numerous uncertainties. In this work, a statistic structural damage detection method formulated in a multiobjective context is proposed, taking into account the uncertainties existing. The presented method is verified by a number of simulated damage scenarios. The effects of noise on damage detection are investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study brings new insights on the hydrogen assisted stress corrosion on damage tolerance of a high-strength duplex stainless steel wire which concerns its potential use as active reinforcement for concrete prestressing. The adopted procedure was to experimentally state the effect of hydrogen on the damage tolerance of cylindrical smooth and precracked wire specimens exposed to stress corrosion cracking using the aggressive medium of the standard test developed by FIP (International Prestressing Federation). Stress corrosion testing, mechanical fracture tests and scanning electron microscopy analysis allowed the damage assessment, and explain the synergy between mechanical loading and environment action on the failure sequence of the wire. In presence of previous damage, hydrogen affects the wire behavior in a qualitative sense, consistently to the fracture anisotropy attributable to cold drawing, but it does not produce quantitative changes since the steel fully preserves its damage tolerance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a repairability index for damage assessment in reinforced concrete structural members. The procedure discussed in this paper differs from the standard methods in two aspects: the structural and damage analyses are coupled and it is based on the concepts of fracture and continuum damage mechanics. The relationship between the repairability index and the well-known Park and Ang index is shown in some particular cases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research focused on the evaluation of damage formation on ±45º carbon fiber laminates subjected to tensile tests. The damage was evaluated by means of X-ray tomography. A high density of cracks developed during the plateau of the stress-strain curve and were qualitatively analyzed, showing that the inner plies eventually developed a higher crack concentration than the outer plies. Delamination started to occur in the outermost ply interface when the slope after the plateau of the stress-strain curve began to increase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of nuclear power plant has to follow a number of regulations aimed at limiting the risks inherent in this type of installation. The goal is to prevent and to limit the consequences of any possible incident that might threaten the public or the environment. To verify that the safety requirements are met a safety assessment process is followed. Safety analysis is as key component of a safety assessment, which incorporates both probabilistic and deterministic approaches. The deterministic approach attempts to ensure that the various situations, and in particular accidents, that are considered to be plausible, have been taken into account, and that the monitoring systems and engineered safety and safeguard systems will be capable of ensuring the safety goals. On the other hand, probabilistic safety analysis tries to demonstrate that the safety requirements are met for potential accidents both within and beyond the design basis, thus identifying vulnerabilities not necessarily accessible through deterministic safety analysis alone. Probabilistic safety assessment (PSA) methodology is widely used in the nuclear industry and is especially effective in comprehensive assessment of the measures needed to prevent accidents with small probability but severe consequences. Still, the trend towards a risk informed regulation (RIR) demanded a more extended use of risk assessment techniques with a significant need to further extend PSA’s scope and quality. Here is where the theory of stimulated dynamics (TSD) intervenes, as it is the mathematical foundation of the integrated safety assessment (ISA) methodology developed by the CSN(Consejo de Seguridad Nuclear) branch of Modelling and Simulation (MOSI). Such methodology attempts to extend classical PSA including accident dynamic analysis, an assessment of the damage associated to the transients and a computation of the damage frequency. The application of this ISA methodology requires a computational framework called SCAIS (Simulation Code System for Integrated Safety Assessment). SCAIS provides accident dynamic analysis support through simulation of nuclear accident sequences and operating procedures. Furthermore, it includes probabilistic quantification of fault trees and sequences; and integration and statistic treatment of risk metrics. SCAIS comprehensively implies an intensive use of code coupling techniques to join typical thermal hydraulic analysis, severe accident and probability calculation codes. The integration of accident simulation in the risk assessment process and thus requiring the use of complex nuclear plant models is what makes it so powerful, yet at the cost of an enormous increase in complexity. As the complexity of the process is primarily focused on such accident simulation codes, the question of whether it is possible to reduce the number of required simulation arises, which will be the focus of the present work. This document presents the work done on the investigation of more efficient techniques applied to the process of risk assessment inside the mentioned ISA methodology. Therefore such techniques will have the primary goal of decreasing the number of simulation needed for an adequate estimation of the damage probability. As the methodology and tools are relatively recent, there is not much work done inside this line of investigation, making it a quite difficult but necessary task, and because of time limitations the scope of the work had to be reduced. Therefore, some assumptions were made to work in simplified scenarios best suited for an initial approximation to the problem. The following section tries to explain in detail the process followed to design and test the developed techniques. Then, the next section introduces the general concepts and formulae of the TSD theory which are at the core of the risk assessment process. Afterwards a description of the simulation framework requirements and design is given. Followed by an introduction to the developed techniques, giving full detail of its mathematical background and its procedures. Later, the test case used is described and result from the application of the techniques is shown. Finally the conclusions are presented and future lines of work are exposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an assessment analysis of damage domains of the 30 MWth prototype High-Temperature Engineering Test Reactor (HTTR) operated by the Japan Atomic Energy Agency (JAEA). For this purpose, an in-house deterministic risk assessment computational tool was developed based on the Theory of Stimulated Dynamics (TSD). To illustrate the methodology and applicability of the developed modelling approach, assessment results of a control rod (CR) withdrawal accident during subcritical conditions are presented and compared with those obtained by the JAEA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The city of Lorca (Spain) was hit on May 11th, 2011, by two consecutive earth-quakes of magnitudes 4.6 and 5.2 Mw, causing casualties and important damage in buildings. Many of the damaged structures were reinforced concrete frames with wide beams. This study quantifies the expected level of damage on this structural type in the case of the Lorca earth-quake by means of a seismic index Iv that compares the energy input by the earthquake with the energy absorption/dissipation capacity of the structure. The prototype frames investigated represent structures designed in two time periods (1994–2002 and 2003–2008), in which the applicable codes were different. The influence of the masonry infill walls and the proneness of the frames to concentrate damage in a given story were further investigated through nonlinear dynamic response analyses. It is found that (1) the seismic index method predicts levels of damage that range from moderate/severe to complete collapse; this prediction is consistent with the observed damage; (2) the presence of masonry infill walls makes the structure very prone to damage concentration and reduces the overall seismic capacity of the building; and (3) a proper hierarchy of strength between beams and columns that guarantees the formation of a strong column-weak beam mechanism (as prescribed by seismic codes), as well as the adoption of counter-measures to avoid the negative interaction between non-structural infill walls and the main frame, would have reduced the level of damage from Iv=1 (collapse) to about Iv=0.5 (moderate/severe damage)