6 resultados para Diseñar para fabricar

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

El premio Nobel Herbert Simon en un ensayo de 1969, definía la ingeniería como la ciencia de lo artificial, cosa que treinta años antes ya estaba contenida an la "Meditación de la Técnica" de Ortega. Simon explica también que la tarea de la ingeniería es cómo diseñar y fabricar artefactos que tengan ciertas propiedades. Al establecer la relación entre el carácter del artefacto y su objetivo surge la necesidad de considerar la influencia del medio ambiente en el que aquél va a funcionar y por eso se puede ver el artefacto como una interfase entre el ambiente exterior y su estructura interior. Las ciencias naturales influyen directamente en estos dos términos y por ello la ingeniería moderna surge cuando se aplican de forma sistemática los conocimientos generados por la ciencia positiva que permiten analizar éxitos y fracasos desde un punto de vista nacional y predecir los efectos de las alteraciones que se introduzcan sobre los diseños iniciales. En España el patriarca de la ingeniería moderna es Agustín de Betancourt, personaje extraordinario al que recientemente la Real Academia de Ingeniería acaba de declarar Summa Auctoritates Academiae y en cuyo honor le ha dedicado un altorrelieve en el Puerto de la Cruz, lugar donde nació en 1758. Pero la ingeniería sólo es grande cuando coincide la calidad de cada uno de los tres factores que intervienen en la misma: proyectistas con imaginación y conocimientos, industria capaz de ofrecer los materiales más adecuados y llevar adelante los procesos de construcción o montaje que áquel imagine y promotores con la solvencia económica capaces de calibrar las ventajas de las soluciones que se ofrecen y apreciar factores imponderables como la innovación, la estética o la sostenibilidad que tanto añaden al cumplimiento de los fines utilitarios que se encuentran en el origen de las intervenciones. El capítulo está organizado en tres bloques: en el primero se muestran brevísimamente algunos arquetipos históricos de la ingeniería más antigua, así como la progresiva influencia de los conocimientos científicos hasta llegar a Betancourt. A continuación se marca la evolución de éste desde su etapa de formación a su transformación en un influyente inventor, pero también en un reformador de los cuerpos de la Administración y de la enseñanza. Finalmente dedicaré un tiempo a hablar del mantenimiento de su espíritu, a pesar de guerras y revoluciones, a lo largo del siglo XX, para concluir con una breve reflexión sobre las enseñanzas a extraer de su ejemplo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El trabajo presentado en este documento se centra en la temática de la transferencia inalámbrica de energía, concretamente en aplicaciones de campo lejano, para llevar a cabo dicho trabajo nos centraremos en el diseño, implementación y medición de una rectenna operando en la banda ISM concretamente a una frecuencia de 2.45GHz, el objetivo primordial de este trabajo será analizar que parámetros intervienen en la eficiencia de conversión en la etapa de RF-DC a fin de lograr la máxima eficiencia de conversión posible. Para llevar a cabo dicho análisis se emplearán herramientas informáticas, concretamente se hará uso del software AWR Microwave Office, a través del cual se realizarán simulaciones SourcePull a fin de determinar la impedancia óptima de entrada que se le debe presentar a la etapa rectificadora RF-DC para conseguir la máxima eficiencia de conversión, una vez realizadas dichas pruebas se implementará físicamente un circuito rectenna a través del cual realizar medidas de SourcePull mediante un Wide Matching Range Slide Screw Tuner de MAURY MICROWAVE para cotejar las posibles diferencias con los resultados obtenidos en las simulaciones. Tras la fase de pruebas SourcePull se extrapolará una red de entrada en base a los datos obtenidos en las mediciones anteriores y se diseñará y fabricará un circuito rectenna con máxima eficiencia de conversión para un conjunto de valores de potencia de entrada de RF y carga de DC, tras lo cual se analizará la eficiencia del circuito diseñado para diferentes valores de potencia de RF de entrada y carga de DC. Como elemento rectificador emplearemos en nuestro trabajo el diodo Schottky HSMS-2820, los diodos Schottky se caracterizan por tener tiempos de conmutación relativamente bajos y pérdidas en directa reducidas los cual será fundamental a la hora de trabajar con niveles reducidos de potencia de RF de entrada, para implementar el circuito se empleará un substrato FR4 con espesor de 0.8mm para disminuir en la mayor medida posible las pérdidas introducidas por el dieléctrico, se analizarán diferentes posibilidades a la hora de implementar el filtro de RF a la salida del diodo rectificador y finalmente se optará por el empleo de un stub radial ya que será este el que mejor ancho de banda nos proporcione. Los resultados simulados se compararán con los resultados medidos sobre el circuito rectenna para determinar la similitud entre ambos. ABSTRACT. The work presented in this paper focuses on the issue of wireless transfer of energy, particularly applied to far-field applications, to carry out this work we focus on the design, implementation and measurement of a rectenna operating in the ISM band specifically at a frequency of 2.45GHz, the primary objective of this study is to analyze any parameter involved in the RF-DC conversion efficiency in order to achieve the maximum conversion efficiency as possible. Computer analysis tools will be used, particularly AWR Microwave Office software, in order to carry out SourcePull simulations to determine the optimal input impedance which must be presented to the rectifier stage for maximum conversion efficiency, once obtained, a rectenna circuit will be implemented to compute SourcePull measurements, and finally simulated results will be compared to measured results. Once obtained the result, an input network impedance is extrapolated based on data from previous measurements to design and implement a rectenna circuit with high conversion efficiency for a set of RF input power and DC load values , after that, the designed circuit efficiency will be analyzed for different values of RF input power and DC load. In this work a HSMS-2820 Schottky diode will be used as the rectifier , Schottky diodes are characterized by relatively low switching times and reduced direct losses, that properties will be essential when working with low RF input power levels , to implement the circuit a FR4 substrate with 0.8mm thickness is used to reduce as much as possible the dielectric losses, different possibilities to implement the RF filter to the output of the rectifier diode will be analyzed, finally we will opt for the use of a radial stub as this will provide the best bandwidth possible. The simulated results are compared with the results measured on the rectenna circuit to determine the similarity between them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los conductos de hormigón durante su vida útil, están sometidos a un conjunto de acciones mecánicas, físicas, químicas y microbiológicas frente a las que deben de diseñarse para soportarlas sin perder sus prestaciones funcionales, de estabilidad mecánica y de estanquidad. Por tanto, las tuberías se deben diseñar y fabricar conforme con unos estándares de calidad adecuados. En este artículo se analizan las acciones mecánicas, físicas y químicas que afectan a los conductos de hormigón utilizados en sistemas de saneamiento y drenaje.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visually impaired people have many difficulties when traveling because it is impossible for them to detect obstacles that stand in their way. Bats instead of using the sight to detect these obstacles use a method based on ultrasounds, as their sense of hearing is much more developed than that of sight. The aim of the project is to design and build a device based on the method used by the bats to detect obstacles and transmit this information to people with vision problems to improve their skills. The method involves sending ultrasonic waves and analyzing the echoes produced when these waves collide with an obstacle. The sent signals are pulses and the information needed is the time elapsed from we send a pulse to receive the echo produced. The speed of sound is fixed within the same environment, so measuring the time it takes the wave to make the return trip, we can easily know the distance where the object is located. To build the device we have to design the necessary circuits, fabricate printed circuit boards and mount the components. We also have to design a program that would work within the digital part, which will be responsible for performing distance calculations and generate the signals with the information for the user. The circuits are the emitter and the receiver. The transmitter circuit is responsible for generating the signals that we will use. We use an ultrasonic transmitter which operates at 40 kHz so the sent pulses have to be modulated with this frequency. For this we generate a 40 kHz wave with an astable multivibrator formed by NAND gates and a train of pulses with a timer. The signal is the product of these two signals. The circuit of the receiver is a signal conditioner which transforms the signals received by the ultrasonic receiver in square pulses. The received signals have a 40 kHz carrier, low voltage and very different shapes. In the signal conditioner we will amplify the voltage to appropriate levels, eliminate the component of 40 kHz and make the shape of the pulses square to use them digitally. To simplify the design and manufacturing process in the digital part of the device we will use the Arduino platform. The pulses sent and received echoes enter through input pins with suitable voltage levels. In the Arduino, our program will poll these two signals storing the time when a pulse occurs. These time values are analyzed and used to generate an audible signal with the user information. This information is stored in the frequency of the signal, so that the generated signal frequency varies depending on the distance at which the objects are. RESUMEN Las personas con discapacidad visual tienen muchas dificultades a la hora de desplazarse ya que les es imposible poder detectar los obstáculos que se interpongan en su camino. Los murciélagos en vez de usar la vista para detectar estos obstáculos utilizan un método basado en ultrasonidos, ya que su sentido del oído está mucho más desarrollado que el de la vista. El objetivo del proyecto es diseñar y construir un dispositivo basado en el método usado por los murciélagos para detectar obstáculos y que pueda ser usado por las personas con problemas en la vista para mejorar sus capacidades. El método utilizado consiste en enviar ondas de ultrasonidos y analizar el eco producido cuando estas ondas chocan con algún obstáculo. Las señales enviadas tendrán forma de pulsos y la información necesaria es el tiempo transcurrido entre que enviamos un pulso y recibimos el eco producido. La velocidad del sonido es fija dentro de un mismo entorno, por lo que midiendo el tiempo que tarda la onda en hacer el viaje de ida y vuelta podemos fácilmente conocer la distancia a la que se encuentra el objeto. Para construir el dispositivo tendremos que diseñar los circuitos necesarios, fabricar las placas de circuito impreso y montar los componentes. También deberemos diseñar el programa que funcionara dentro de la parte digital, que será el encargado de realizar los cálculos de la distancia y de generar las señales con la información para el usuario. Los circuitos diseñados corresponden uno al emisor y otro al receptor. El circuito emisor es el encargado de generar las señales que vamos a emitir. Vamos a usar un emisor de ultrasonidos que funciona a 40 kHz por lo que los pulsos que enviemos van a tener que estar modulados con esta frecuencia. Para ello generamos una onda de 40 kHz mediante un multivibrador aestable formado por puertas NAND y un tren de pulsos con un timer. La señal enviada es el producto de estas dos señales. El circuito de la parte del receptor es un acondicionador de señal que transforma las señales recibidas por el receptor de ultrasonidos en pulsos cuadrados. Las señales recibidas tienen una portadora de 40 kHz para poder usarlas con el receptor de ultrasonidos, bajo voltaje y formas muy diversas. En el acondicionador de señal amplificaremos el voltaje a niveles adecuados además de eliminar la componente de 40 kHz y conseguir pulsos cuadrados que podamos usar de forma digital. Para simplificar el proceso de diseño y fabricación en la parte digital del dispositivo usaremos la plataforma Arduino. Las señales correspondientes el envío de los pulsos y a la recepción de los ecos entraran por pines de entrada después de haber adaptado los niveles de voltaje. En el Arduino, nuestro programa sondeara estas dos señales almacenando el tiempo en el que se produce un pulso. Estos valores de tiempo se analizan y se usan para generar una señal audible con la información para el usuario. Esta información ira almacenada en la frecuencia de la señal, por lo que la señal generada variará su frecuencia en función de la distancia a la que se encuentren los objetos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El trabajo consistirá en la fabricación de un amplificador en banda 3G pasando por todos los pasos del proceso, desde el análisis y diseño teórico, la simulación circuital y, por último, la fabricación y caracterización del amplificador. Se ha escogido una estructura balanceada, consistente en dos acopladores 3dB 90º colocados en cascada con dos amplificadores conectados entre las salidas del primero y las entradas del segundo, por la considerable ventaja que supone en términos de linealidad de la ganancia y simplicidad en la adaptación. La primera tarea a desarrollar será definir los valores teóricos a emplear en los componentes de la estructura, esto es, la caracterización de los acopladores 3dB 90º, de los transistores BJT y de las posibles etapas de acoplo necesarias para el correcto funcionamiento del mismo. Se comenzará empleando los modelos ideales de los componentes, realizando una primera simulación en MatLab para obtener los valores de los elementos que serán introducidos en el simulador circuital, en este proyecto ADS. Una vez terminada el diseño teórico ideal se procederá a introducir efectos perturbadores en la simulación circuital que representen más adecuadamente el comportamiento real que se encontrará al fabricar el prototipo. Se diseñará mediante simulación circuital (ADS) el amplificador considerando los parámetros circuitales de los componentes considerados (BJT NPN) procedentes de la hoja de especificaciones del fabricante. Una vez diseñado este, se ajustará el diseño del módulo amplificador teniendo en cuenta el comportamiento de las conexiones en microondas. El efecto de estas conexiones se considerará mediante equivalentes circuitales. Con todo esto se analizará el circuito completo, y con estos elementos introducidos se buscará optimizar el diseño teórico inicial para mantener dichos efectos perturbadores centro de un margen aceptable. Proseguirá el trabajo con la fabricación del prototipo, empleando líneas microstrip para los acopladores, y transistores BJT para los amplificadores. Terminada la fabricación se realizará la última tarea del trabajo, consistente en la medida del prototipo en el laboratorio, donde se observará la respuesta en frecuencia en módulo y fase de la estructura, realizando la caracterización en parámetros S del amplificador. Se analizarán los resultados y se compararán estos con el diseño, en caso de existir diferencias entre ambos se intentará encontrar la justificación

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El trabajo contenido en esta tesis doctoral está encuadrado en el desarrollo de antenas reconfigurables electrónicamente capaces de proporcionar prestaciones competitivas a las aplicaciones cada vez más comunes que operan a frecuencias superiores a 60 GHz. En concreto, esta tesis se centra en el estudio, diseño, e implementación de las antenas reflectarray, a las que se introduce la tecnología de cristal líquido como elemento característico con el que se consigue reconfigurabilidad de haz de forma electrónica. Desde un punto de vista muy general, se puede describir un cristal líquido como un material cuya permitividad eléctrica es variable y controlada por una excitación externa, que generalmente suele corresponderse con un campo eléctrico quasi-estático (AC). Las antenas reflectarray de cristal líquido se han escogido como objeto de estudio por varias razones. La primera de ellas tiene que ver con las ventajas que los reflectarrays, y en especial aquellos realizados en configuración planar, proporcionan con respecto a otras antenas de alta ganancia como los reflectores o los “phased-arrays”. En los reflectarrays, la alimentación a través de una fuente primaria común (característica de reflectores) y el elevado número de grados de libertad de las celdas que los componen (característica de arrays) hacen que estas antenas puedan proporcionar prestaciones eléctricas iguales o mejores que las anteriores, a un coste más reducido y con estructuras de antena más compactas. La segunda razón radica en la flexibilidad que ofrece el cristal líquido a ser confinado y polarizado en recintos de geometría variada, como consecuencia de su fluidez (propiedad de los líquidos). Por ello, la tecnología de cristal líquido permite que el propio elemento reconfigurable en las celdas de reflectarray se adapte a la configuración planar de manera que en sí mismo, el cristal líquido sea una o varias de las capas características de esta configuración. Esto simplifica de forma drástica la estructura y la fabricación de este tipo de antenas, incluso si se comparan con reflectarrays reconfigurables basados en otras tecnologías como diodos, MEMS, etc. Por tanto, su coste y desarrollo es muy reducido, lo que hace que se puedan fabricar reflectarrays reconfigurables eléctricamente grandes, a bajo coste, y en producción elevada. Un ejemplo claro de una estructura similar, y que ha tenido éxito comercial, son las pantallas de cristal líquido. La tercera razón reside en el hecho de que el cristal líquido es, hasta la fecha, de las pocas tecnologías capaces de ofrecer reconfigurabilidad del haz a frecuencias superiores a 60 GHz. De hecho, el cristal líquido permite reconfigurabilidad en un amplio margen de frecuencias, que va desde DC a frecuencias del espectro visible, incluyendo las microondas y los THz. Otras tecnologías, como los materiales ferroeléctricos, el grafeno o la tecnología CMOS “on chip” permiten también conmutar el haz en estas frecuencias. Sin embargo, la tecnología CMOS tiene un elevado coste y actualmente está limitada a frecuencias inferiores a 150 GHz, y aunque los materiales ferroeléctricos o el grafeno puedan conmutar a frecuencias más altas y en un rango más amplio, tienen serias dificultades que los hacen aún inmaduros. En el caso de los materiales ferroeléctricos, los elevados voltajes para conmutar el material los hacen poco atractivos, mientras que en el caso del grafeno, su modelado aún está en discusión, y todavía no se han arrojado resultados experimentales que validen su idoneidad. Estas tres razones hacen que los reflectarrays basados en cristal líquido sean atractivos para multitud de aplicaciones de haz reconfigurable a frecuencias superiores a 60 GHz. Aplicaciones como radar de escaneo de imágenes de alta resolución, espectroscopia molecular, radiómetros para observación atmosférica, o comunicaciones inalámbricas de alta frecuencia (WiGig) son algunas de ellas. La tesis está estructurada en tres partes. En la primera de ellas se describen las características más comunes de los cristales líquidos, centrándonos en detalle en aquellas propiedades ofrecidas por este material en fase nemática. En concreto, se estudiará la anisotropía dieléctrica (Ae) de los cristales líquidos uniaxiales, que son los que se emplean en esta tesis, definida como la diferencia entre la permitividad paralela (£//) y la perpendicular (e±): Ae = e,, - e±. También se estudiará la variación de este parámetro (Ae) con la frecuencia, y el modelado electromagnético macroscópico más general que, extraído a partir de aquella, permite describir el cristal líquido para cada tensión de polarización en celdas de geometría planar. Este modelo es de suma importancia para garantizar precisión en el desfasaje proporcionado por las diferentes celdas reconfigurables para reflectarrays que se describirán en la siguiente parte de la tesis. La segunda parte de la tesis se centra en el diseño de celdas reflectarray resonantes basadas en cristal líquido. La razón por la que se escogen estos tipos de celdas reside en el hecho de que son las únicas capaces de proporcionar rangos de fase elevados ante la reducida anisotropía dieléctrica que ofrecen los cristales líquidos. El objetivo de esta parte trata, por tanto, de obtener estructuras de celdas reflectarray que sean capaces de proporcionar buenas prestaciones eléctricas a nivel de antena, mejorando sustancialmente las prestaciones de las celdas reportadas en el estado del arte, así como de desarrollar una herramienta de diseño general para aquellas. Para ello, se estudian las prestaciones eléctricas de diferentes tipos de elementos resonantes de cristal líquido que van, desde el más sencillo, que ha limitado el estado de la técnica hasta el desarrollo de esta tesis y que está formado por un sólo resonador, a elementos que constan de varios resonadores (multi-resonantes) y que pueden ser monocapa o multicapa. En un primer paso, el procedimiento de diseño de estas estructuras hace uso de un modelo convencional de cristal líquido que ha venido siendo usado en el estado del arte para este tipo de celdas, y que considera el cristal líquido como un material homogéneo e isótropo cuya permitividad varía entre (e/7) y (e±). Sin embargo, en esta parte de la tesis se demuestra que dicho modelado no es suficiente para describir de forma genérica el comportamiento del cristal líquido en las celdas tipo reflectarray. En la tesis se proponen procedimientos más exactos para el análisis y diseño basados en un modelo más general que define el cristal líquido como un material anisótropo e inhomogeneo en tres dimensiones, y se ha implementado una técnica que permite optimizar celdas multi-resonantes de forma eficiente para conseguir elevadas prestaciones en cuanto a ancho de banda, rango de fase, pérdidas, o sensibilidad al ángulo de incidencia. Los errores cometidos en el uso del modelado convencional a nivel de celda (amplitud y fase) se han analizado para varias geometrías, usando medidas de varios prototipos de antena que usan un cristal líquido real a frecuencias superiores a 100 GHz. Las medidas se han realizado en entorno periódico mediante un banco cuasi-óptico, que ha sido diseñado especialmente para este fin. Uno de estos prototipos se ha optimizado a 100 GHz para conseguir un ancho de banda relativamente elevado (10%), pérdidas reducidas, un rango de fase mayor de 360º, baja sensibilidad al ángulo de incidencia, y baja influencia de la inhomogeneidad transversal del cristal líquido en la celda. Estas prestaciones a nivel de celda superan de forma clara aquellas conseguidas por otros elementos que se han reportado en la literatura, de manera que dicho prototipo se ha usado en la última parte de la tesis para realizar diversas antenas de barrido. Finalmente, en esta parte se presenta una estrategia de caracterización de la anisotropía macroscópica a partir de medidas de los elementos de reflectarray diseñados en banco cuasi-óptico, obteniendo resultados tanto en las frecuencias de interés en RF como en AC, y comparándolas con aquellas obtenidas mediante otros métodos. La tercera parte de la tesis consiste en el estudio, diseño, fabricación y medida de antenas reconfigurables basadas en cristal líquido en configuraciones complejas. En reflectarrays pasivos, el procedimiento de diseño de la antena se limita únicamente al ajuste en cada celda de la antena de las dimensiones de las metalizaciones que se emplean para el control de fase, mediante procesos de optimización bien conocidos. Sin embargo, en el caso de reflectarrays reconfigurables basados en cristal líquido, resulta necesario un paso adicional, que consiste en calcular de forma adecuada las tensiones de control en cada celda del reflectarray para configurar la fase requerida en cada una de ellas, así como diseñar la estructura y los circuitos de control que permitan direccionar a cada elemento su tensión correspondiente. La síntesis de tensiones es por tanto igual o más importante que el diseño de la geometría de las celdas, puesto que éstas son las que están directamente relacionadas con la fase. En el estado del arte, existen varias estrategias de síntesis de tensiones que se basan en la caracterización experimental de la curva de fase respecto al voltaje. Sin embargo, esta caracterización sólo puede hacerse a un solo ángulo de incidencia y para unas determinadas dimensiones de celda, lo que produce que las tensiones sintetizadas sean diferentes de las adecuadas, y en definitiva que se alcancen errores de fase mayores de 70º. De esta forma, hasta la fecha, las prestaciones a nivel de antena que se han conseguido son reducidas en cuanto a ancho de banda, rango de escaneo o nivel de lóbulos secundarios. En esta última parte de la tesis, se introduce una nueva estrategia de síntesis de tensiones que es capaz de predecir mediante simulaciones, y con alta precisión, las tensiones que deben introducirse en cada celda teniendo en cuenta su ángulo de incidencia, sus dimensiones, la frecuencia, así como la señal de polarización definida por su frecuencia y forma de onda AC. Esta estrategia se basa en modelar cada uno de los estados de permitividad del cristal líquido como un sustrato anisótropo con inhomogeneidad longitudinal (1D), o en ciertos casos, como un tensor equivalente homogéneo. La precisión de ambos modelos electromagnéticos también se discute. Con el objetivo de obtener una herramienta eficiente de cálculo de tensiones, también se ha escrito e implementado una herramienta de análisis basada en el Método de los Momentos en el Dominio Espectral (SD-MoM) para sustratos estratificados anisótropos, que se usa en cada iteración del procedimiento de síntesis para analizar cada una de las celdas de la antena. La síntesis de tensiones se ha diseñado además para reducir al máximo el efecto del rizado de amplitud en el diagrama de radiación, que es característico en los reflectarrays que están formados por celdas con pérdidas elevadas, lo que en sí, supone un avance adicional para la obtención de mejores prestaciones de antena. Para el cálculo de los diagramas de radiación empleados en el procedimiento de síntesis, se asume un análisis elemento a elemento considerando periodicidad local, y se propone el uso de un método capaz de modelar el campo incidente de forma que se elimine la limitación de la periodicidad local en la excitación. Una vez definida la estrategia adecuada de cálculo de las tensiones a aplicar al cristal líquido en cada celda, la estructura de direccionamiento de las mismas en la antena, y diseñados los circuitos de control, se diseñan, fabrican y miden dos prototipos diferentes de antena de barrido electrónico a 100 GHz usando las celdas anteriormente presentadas. El primero de estos prototipos es un reflectarray en configuración “single offset” con capacidad de escaneo en un plano (elevación o azimut). Aunque previamente se realizan diseños de antenas de barrido en 2D a varias frecuencias en el rango de milimétricas y sub-milimétricas, y se proponen ciertas estrategias de direccionamiento que permiten conseguir este objetivo, se desarrolla el prototipo con direccionamiento en una dimensión con el fin de reducir el número de controles y posibles errores de fabricación, y así también validar la herramienta de diseño. Para un tamaño medio de apertura (con un numero de filas y columnas entre 30 y 50 elementos, lo que significa un reflectarray con un número de elementos superior a 900), la configuración “single offset” proporciona rangos de escaneo elevados, y ganancias que pueden oscilar entre los 20 y 30 dBi. En concreto, el prototipo medido proporciona un haz de barrido en un rango angular de 55º, en el que el nivel de lóbulos secundarios (SLL) permanece mejor de -13 dB en un ancho de banda de un 8%. La ganancia máxima es de 19.4 dBi. Estas prestaciones superan de forma clara aquellas conseguidas por otros autores. El segundo prototipo se corresponde con una antena de doble reflector que usa el reflectarray de cristal líquido como sub-reflector para escanear el haz en un plano (elevación o azimut). El objetivo básico de esta geometría es obtener mayores ganancias que en el reflectarray “single offset” con una estructura más compacta, aunque a expensas de reducir el rango de barrido. En concreto, se obtiene una ganancia máxima de 35 dBi, y un rango de barrido de 12º. Los procedimientos de síntesis de tensiones y de diseño de las estructuras de las celdas forman, en su conjunto, una herramienta completa de diseño precisa y eficiente de antenas reflectarray reconfigurables basados en cristales líquidos. Dicha herramienta se ha validado mediante el diseño, la fabricación y la medida de los prototipos anteriormente citados a 100 GHz, que consiguen algo nunca alcanzado anteriormente en la investigación de este tipo de antenas: unas prestaciones competitivas y una predicción excelente de los resultados. El procedimiento es general, y por tanto se puede usar a cualquier frecuencia en la que el cristal líquido ofrezca anisotropía dieléctrica, incluidos los THz. Los prototipos desarrollados en esta tesis doctoral suponen también unas de las primeras antenas de barrido real a frecuencias superiores a 100 GHz. En concreto, la antena de doble reflector para escaneo de haz es la primera antena reconfigurable electrónicamente a frecuencias superiores a 60 GHz que superan los 25 dBi de ganancia, siendo a su vez la primera antena de doble reflector que contiene un reflectarray reconfigurable como sub-reflector. Finalmente, se proponen ciertas mejoras que aún deben se deben realizar para hacer que estas antenas puedan ser un producto completamente desarrollado y competitivo en el mercado. ABSTRACT The work presented in this thesis is focused on the development of electronically reconfigurable antennas that are able to provide competitive electrical performance to the increasingly common applications operating at frequencies above 60 GHz. Specifically, this thesis presents the study, design, and implementation of reflectarray antennas, which incorporate liquid crystal (LC) materials to scan or reconfigure the beam electronically. From a general point of view, a liquid crystal can be defined as a material whose dielectric permittivity is variable and can be controlled with an external excitation, which usually corresponds with a quasi-static electric field (AC). By changing the dielectric permittivity at each cell that makes up the reflectarray, the phase shift on the aperture is controlled, so that a prescribed radiation pattern can be configured. Liquid Crystal-based reflectarrays have been chosen for several reasons. The first has to do with the advantages provided by the reflectarray antenna with respect to other high gain antennas, such as reflectors or phased arrays. The RF feeding in reflectarrays is achieved by using a common primary source (as in reflectors). This arrangement and the large number of degrees of freedom provided by the cells that make up the reflectarray (as in arrays), allow these antennas to provide a similar or even better electrical performance than other low profile antennas (reflectors and arrays), but assuming a more reduced cost and compactness. The second reason is the flexibility of the liquid crystal to be confined in an arbitrary geometry due to its fluidity (property of liquids). Therefore, the liquid crystal is able to adapt to a planar geometry so that it is one or more of the typical layers of this configuration. This simplifies drastically both the structure and manufacture of this type of antenna, even when compared with reconfigurable reflectarrays based on other technologies, such as diodes MEMS, etc. Therefore, the cost of developing this type of antenna is very small, which means that electrically large reconfigurable reflectarrays could be manufactured assuming low cost and greater productions. A paradigmatic example of a similar structure is the liquid crystal panel, which has already been commercialized successfully. The third reason lies in the fact that, at present, the liquid crystal is one of the few technologies capable of providing switching capabilities at frequencies above 60 GHz. In fact, the liquid crystal allows its permittivity to be switched in a wide range of frequencies, which are from DC to the visible spectrum, including microwaves and THz. Other technologies, such as ferroelectric materials, graphene or CMOS "on chip" technology also allow the beam to be switched at these frequencies. However, CMOS technology is expensive and is currently limited to frequencies below 150 GHz, and although ferroelectric materials or graphene can switch at higher frequencies and in a wider range, they have serious difficulties that make them immature. Ferroelectric materials involve the use of very high voltages to switch the material, making them unattractive, whereas the electromagnetic modelling of the graphene is still under discussion, so that the experimental results of devices based on this latter technology have not been reported yet. These three reasons make LC-based reflectarrays attractive for many applications that involve the use of electronically reconfigurable beams at frequencies beyond 60 GHz. Applications such as high resolution imaging radars, molecular spectroscopy, radiometers for atmospheric observation, or high frequency wireless communications (WiGig) are just some of them. This thesis is divided into three parts. In the first part, the most common properties of the liquid crystal materials are described, especially those exhibited in the nematic phase. The study is focused on the dielectric anisotropy (Ac) of uniaxial liquid crystals, which is defined as the difference between the parallel (e/7) and perpendicular (e±) permittivities: Ae = e,, - e±. This parameter allows the permittivity of a LC confined in an arbitrary volume at a certain biasing voltage to be described by solving a variational problem that involves both the electrostatic and elastic energies. Thus, the frequency dependence of (Ae) is also described and characterised. Note that an appropriate LC modelling is quite important to ensure enough accuracy in the phase shift provided by each cell that makes up the reflectarray, and therefore to achieve a good electrical performance at the antenna level. The second part of the thesis is focused on the design of resonant reflectarray cells based on liquid crystal. The reason why resonant cells have been chosen lies in the fact that they are able to provide enough phase range using the values of the dielectric anisotropy of the liquid crystals, which are typically small. Thus, the aim of this part is to investigate several reflectarray cell architectures capable of providing good electrical performance at the antenna level, which significantly improve the electrical performance of the cells reported in the literature. Similarly, another of the objectives is to develop a general tool to design these cells. To fulfill these objectives, the electrical yields of different types of resonant reflectarray elements are investigated, beginning from the simplest, which is made up of a single resonator and limits the state of the art. To overcome the electrical limitations of the single resonant cell, several elements consisting of multiple resonators are considered, which can be single-layer or multilayer. In a first step, the design procedure of these structures makes use of a conventional electromagnetic model which has been used in the literature, which considers that the liquid crystal behaves as homogeneous and isotropic materials whose permittivity varies between (e/7) y (e±). However, in this part of the thesis it is shown that the conventional modelling is not enough to describe the physical behaviour of the liquid crystal in reflectarray cells accurately. Therefore, a more accurate analysis and design procedure based on a more general model is proposed and developed, which defines the liquid crystal as an anisotropic three-dimensional inhomogeneous material. The design procedure is able to optimize multi-resonant cells efficiently to achieve good electrical performance in terms of bandwidth, phase range, losses, or sensitivity to the angle of incidence. The errors made when the conventional modelling (amplitude and phase) is considered have been also analysed for various cell geometries, by using measured results from several antenna prototypes made up of real liquid crystals at frequencies above 100 GHz. The measurements have been performed in a periodic environment using a quasi-optical bench, which has been designed especially for this purpose. One of these prototypes has been optimized to achieve a relatively large bandwidth (10%) at 100 GHz, low losses, a phase range of more than 360º, a low sensitivity to angle of incidence, and a low influence of the transversal inhomogeneity of the liquid crystal in the cell. The electrical yields of this prototype at the cell level improve those achieved by other elements reported in the literature, so that this prototype has been used in the last part of the thesis to perform several complete antennas for beam scanning applications. Finally, in this second part of the thesis, a novel strategy to characterise the macroscopic anisotropy using reflectarray cells is presented. The results in both RF and AC frequencies are compared with those obtained by other methods. The third part of the thesis consists on the study, design, manufacture and testing of LCbased reflectarray antennas in complex configurations. Note that the design procedure of a passive reflectarray antenna just consists on finding out the dimensions of the metallisations of each cell (which are used for phase control), using well-known optimization processes. However, in the case of reconfigurable reflectarrays based on liquid crystals, an additional step must be taken into account, which consists of accurately calculating the control voltages to be applied to each cell to configure the required phase-shift distribution on the surface of the antenna. Similarly, the structure to address the voltages at each cell and the control circuitry must be also considered. Therefore, the voltage synthesis is even more important than the design of the cell geometries (dimensions), since the voltages are directly related to the phase-shift. Several voltage synthesis procedures have been proposed in the state of the art, which are based on the experimental characterization of the phase/voltage curve. However, this characterization can be only carried out at a single angle of incidence and at certain cell dimensions, so that the synthesized voltages are different from those needed, thus giving rise to phase errors of more than 70°. Thus, the electrical yields of the LCreflectarrays reported in the literature are limited in terms of bandwidth, scanning range or side lobes level. In this last part of the thesis, a new voltage synthesis procedure has been defined and developed, which allows the required voltage to be calculated at each cell using simulations that take into account the particular dimensions of the cells, their angles of incidence, the frequency, and the AC biasing signal (frequency and waveform). The strategy is based on the modelling of each one of the permittivity states of the liquid crystal as an anisotropic substrate with longitudinal inhomogeneity (1D), or in certain cases, as an equivalent homogeneous tensor. The accuracy of both electromagnetic models is also discussed. The phase errors made by using the proposed voltage synthesis are better than 7º. In order to obtain an efficient tool to analyse and design the reflectarray, an electromagnetic analysis tool based on the Method of Moments in the spectral domain (SD-MoM) has also written and developed for anisotropic stratified media, which is used at each iteration of the voltage synthesis procedure. The voltage synthesis is also designed to minimize the effect of amplitude ripple on the radiation pattern, which is typical of reflectarrays made up of cells exhibiting high losses and represents a further advance in achieving a better antenna performance. To calculate the radiation patterns used in the synthesis procedure, an element-by-element analysis is assumed, which considers the local periodicity approach. Under this consideration, the use of a novel method is proposed, which avoids the limitation that the local periodicity imposes on the excitation. Once the appropriate strategy to calculate the voltages to be applied at each cell is developed, and once it is designed and manufactured both the structure to address the voltages to the antenna and the control circuits, two complete LC-based reflectarray antennas that operate at 100 GHz have been designed, manufactured and tested using the previously presented cells. The first prototype consists of a single offset reflectarray with beam scanning capabilities on one plane (elevation and azimuth). Although several LC-reflectarray antennas that provide 2-D scanning capabilities are also designed, and certain strategies to achieve the 2-D addressing of the voltage are proposed, the manufactured prototype addresses the voltages in one dimension in order to reduce the number of controls and manufacturing errors, and thereby validating the design tool. For an average aperture size (with a number of rows and columns of between 30 and 50 elements, which means a reflectarray with more than 900 cells), the single offset configuration provides an antenna gain of between 20 and 30 dBi and a large scanning range. The prototype tested at 100 GHz exhibits an electronically scanned beam in an angular range of 55º and 8% of bandwidth, in which the side lobe level (SLL) remains better than -13 dB. The maximum gain is 19.4 dBi. The electrical performance of the antenna is clearly an improvement on those achieved by other authors in the state of the art. The second prototype corresponds to a dual reflector antenna with a liquid crystal-based reflectarray used as a sub-reflector for beam scanning in one plane (azimuth or elevation). The main objective is to obtain a higher gain than that provided by the single offset configuration, but using a more compact architecture. In this case, a maximum gain of 35 dBi is achieved, although at the expense of reducing the scanning range to 12°, which is inherent in this type of structure. As a general statement, the voltage synthesis and the design procedure of the cells, jointly make up a complete, accurate and efficient design tool of reconfigurable reflectarray antennas based on liquid crystals. The tool has been validated by testing the previously mentioned prototypes at 100 GHz, which achieve something never reached before for this type of antenna: a competitive electrical performance, and an excellent prediction of the results. The design procedure is general and therefore can be used at any frequency for which the liquid crystal exhibits dielectric anisotropy. The two prototypes designed, manufactured and tested in this thesis are also some of the first antennas that currently operate at frequencies above 100 GHz. In fact, the dual reflector antenna is the first electronically scanned dual reflector antenna at frequencies above 60 GHz (the operation frequency is 100 GHz) with a gain greater than 25 dBi, being in turn the first dual-reflector antenna with a real reconfigurable sub-reflectarray. Finally, some improvements that should be still investigated to make these antennas commercially competitive are proposed.