2 resultados para Discriminação isotópica
em Universidad Politécnica de Madrid
Resumo:
En claro alineamiento con estrategias de sostenibilidad en el uso de recursos naturales en un escenario constante de aumento de la demanda energética mundial, el desarrollo de la tecnología energética en la Historia de la Especie Humana muestra un vector de evolución permanente desde su origen en el sentido del desarrollo y uso de nuevas fuentes energéticas con la explotación de recursos naturales de manera más eficiente: soluciones energéticas con aumento de la densidad energética (exoenergía de proceso por unidad de masa de recurso natural). Así el cambio de escala en la demanda de explotación del Litio como recurso natural se viene presentando en la última década ligada al desarrollo del mercado de las baterías "ion-Litio" y los requisitos de combustible (Deuterio y Litio) en el camino de la fusión nuclear como opción energética próxima. El análisis anticipado de las demandas sinérgicas a escala de ambos mercados aparece de enorme interés prospectivo en sus aspectos técnicos: (1) tecnologías de base para la extracción mineral y de agua marina y (2) su enriquecimiento isotópico (de interés sinérgico; 7Li para baterías eficientes ion-litio; 6Li como regenerador de tritio en ciclo de combustible en fusión nuclear) a la vez que en sus aspectos económicos. Este Proyecto realiza: (1) un ejercicio de análisis prospectivo de la demanda y de mercado para el enriquecimiento 6Li/7Li para las próximas décadas, (2) se califican los desarrollos tecnológicos específicos que van a poder permitir la producción a escala conforme a la demanda; (3) se selecciona y califica una técnica [de centrifugación / termo-difusión/ destilación combinada] como opción tecnológicamente viable para la producción a escala de formas litiadas; (4) se propone un diseño conceptual de planta de producción y finalmente (5) propone un estudio de viabilidad para la demostración de proceso y construcción de dicha planta de demostración de la nueva capacidad tecnológica. ABSTRACT Clearly aligned with sustainability strategies under growing world energy demand in the use of natural resources the development of energy technology in the history of the human species shows a vector of ongoing evolution from its origin in the sense of the development and use of new energy sources with the exploitation of natural resources in a more efficient manner. The change of scale in the demand for exploitation of Lithium as a natural resource appears during the last decade as bound to the deployment of "lithium-ion" batteries market and to the Nuclear Fusion fuels (deuterium and lithium) supply scaled demands. The prospective analysis of demands to scale in both markets appears in scene with huge prospective interest in its technical aspects: (1) base technologies for mineral and water marine extraction (2) its isotopic enrichment (synergistic interests; 7Li efficient battery Li-ion; 6Li as fusion nuclear fuel breeder (tritium) as well as in its economic aspects. This Project: (1) propose a prospective analysis exercise of the synergistic supply demand for coming decades for the enrichment of 6Li and 7Li, (2) qualifies specific technological developments ongoing to respond to supply demand; (3) select and qualifies an appropriate technique [combined centrifugation/thermo-diffusion/distillation] as technologically viable option for lithiated forms scaled-production; (4) proposes a conceptual design of production plant based on the technique and finally (5) proposes a feasibility study for the process demonstration and construction of this new technological capability Demonstration Plant.
Resumo:
La importancia de la seguridad en la aplicación de la tecnología nuclear impregna todas las tareas asociadas a la utilización de esta fuente de energía, comenzando por la fase de diseño, explotación y posterior desmantelamiento o gestión de residuos. En todos estos pasos, las herramientas de simulación computacional juegan un papel esencial como guía para el diseño, apoyo durante la operación o predicción de la evolución isotópica de los materiales del reactor. Las constantes mejoras en cuanto a recursos computacionales desde mediados del siglo XX hasta este momento así como los avances en los métodos de cálculo utilizados, permiten tratar la complejidad de estas situaciones con un detalle cada vez mayor, que en ocasiones anteriores fue simplemente descartado por falta de capacidad de cálculo o herramientas adecuadas. El presente trabajo se centra en el desarrollo de un método de cálculo neutrónico para reactores de agua ligera basado en teoría de difusión corregida con un nivel de detalle hasta la barra de combustible, considerando un número de grupos de energía mayor que los tradicionales rápido y térmico, y modelando la geometría tridimensional del núcleo del reactor. La capacidad de simular tanto situaciones estacionarias con posible búsqueda de criticidad, como la evolución durante transitorios del flujo neutrónico ha sido incluida, junto con un algoritmo de cálculo de paso de tiempo adaptativo para mejorar el rendimiento de las simulaciones. Se ha llevado a cabo un estudio de optimización de los métodos de cálculo utilizados para resolver la ecuación de difusión, tanto en el lazo de iteración de fuente como en los métodos de resolución de sistemas lineales empleados en las iteraciones internas. Por otra parte, la cantidad de memoria y tiempo de computación necesarios para resolver problemas de núcleo completo en malla fina obliga a introducir un método de paralelización en el cálculo; habiéndose aplicado una descomposición en subdominios basada en el método alternante de Schwarz acompañada de una aceleración nodal. La aproximación de difusión debe ser corregida si se desea reproducir los valores con una precisión cercana a la obtenida con la ecuación de transporte. Los factores de discontinuidad de la interfase utilizados para esta corrección no pueden en la práctica ser calculados y almacenados para cada posible configuración de una barra de combustible de composición determinada en el interior del reactor. Por esta razón, se ha estudiado una parametrización del factor de discontinuidad según la vecindad que permitiría tratar este factor como una sección eficaz más, parametrizada en función de valores significativos del entorno de la barra de material. Por otro lado, también se ha contemplado el acoplamiento con códigos termohidráulicos, lo que permite realizar simulaciones multifísica y producir resultados más realistas. Teniendo en cuenta la demanda creciente de la industria nuclear para que los resultados realistas sean suministrados junto con sus márgenes de confianza, se ha desarrollado la posibilidad de obtener las sensibilidades de los resultados mediante el cálculo del flujo adjunto, para posteriormente propagar las incertidumbres de las secciones eficaces a los cálculos de núcleo completo. Todo este trabajo se ha integrado en el código COBAYA3 que forma parte de la plataforma de códigos desarrollada en el proyecto europeo NURESIM del 6º Programa Marco. Los desarrollos efectuados han sido verificados en cuanto a su capacidad para modelar el problema a tratar; y la implementación realizada en el código ha sido validada numéricamente frente a los datos del benchmark de transitorio accidental en un reactor PWR con combustible UO2/MOX de la Agencia de Energía Nuclear de la OCDE, así como frente a otros benchmarks de LWR definidos en los proyectos europeos NURESIM y NURISP.