5 resultados para Discrete Variables

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is found. We illustrate and study the methods using data sampled from known parametric distributions, and we demonstrate their applicability by learning models based on real neuroscience data. Finally, we compare the performance of the proposed methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The empirical results show that the proposed methods generally yield models that are comparable to or significantly better than those found using the MoTBF-based method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To develop effective cycling policies, decision makers and administrators should know the factors influencing the use of the bicycle for daily mobility. Traditional discrete choice models tend to be based on variables such as time and cost, which do not sufficiently explain the choice of the bicycle as a mode of transportation. Because psychological factors have been identified as particularly influential in the decision to commute by bicycle, this paper examines the perceptions of cycling factors and their influence on commuting by bicycle. Perceptions are measured by attitudes, other psychological variables, and habits. Statistical differences in the variables are established in relation to the choice of commuting mode and bicycle experience (commuter, sport-leisure, no use). Doing so enables the authors to identify the main barriers to commuting by bicycle and to make recommendations for cycling policies. Two underlying structures (factors) of the attitudinal variables are identified: direct benefits and long-term benefits. Three other factors are related to variables of difficulty: physical conditions, external facilities, and individual capacities. The effect of attitudes and other psychological variables on people's decision to cycle to work-place of study is tested by using a logit model. In the case study of Madrid, Spain, the decision to cycle to work-place of study is heavily influenced by cycling habits (for noncommuting trips). Because bicycle commuting is not common, attitudes and other psychological variables play a less important role in the use of bikes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To develop effective cycling policies, decision makers and administrators should know the factors influencing the use of the bicycle for daily mobility. Traditional discrete choice models tend to be based on variables such as time and cost, which do not sufficiently explain the choice of the bicycle as a mode of transportation. Because psychological factors have been identified as particularly influential in the decision to commute by bicycle, this paper examines the perceptions of cycling factors and their influence on commuting by bicycle. Perceptions are measured by attitudes, other psychological variables, and habits. Statistical differences in the variables are established in relation to the choice of commuting mode and bicycle experience (commuter, sport–leisure, no use). Doing so enables the authors to identify the main barriers to commuting by bicycle and to make recommendations for cycling policies. Two underlying structures (factors) of the attitudinal variables are identified: direct benefits and long-term benefits. Three other factors are related to variables of difficulty: physical conditions, external facilities, and individual capacities. The effect of attitudes and other psychological variables on people’s decision to cycle to work–place of study is tested by using a logit model. In the case study of Madrid, Spain, the decision to cycle to work– place of study is heavily influenced by cycling habits (for noncommuting trips). Because bicycle commuting is not common, attitudes and other psychological variables play a less important role in the use of bikes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo presenta un método discreto para el cálculo de estabilidad hidrodinámica y análisis de sensibilidad a perturbaciones externas para ecuaciones diferenciales y en particular para las ecuaciones de Navier-Stokes compressible. Se utiliza una aproximación con variable compleja para obtener una precisión analítica en la evaluación de la matriz Jacobiana. Además, mapas de sensibilidad para la sensibilidad a las modificaciones del flujo de base y a una fuerza constante permiten identificar las regiones del campo fluido donde una modificacin (ej. fuerza puntual) tiene un efecto estabilizador del flujo. Se presentan cuatro casos de prueba: (1) un caso analítico para comprobar la derivación discreta, (2) una cavidad cerrada a bajo Reynolds para mostrar la mayor precisión en el cálculo de los valores propios con la aproximación de paso complejo, (3) flujo 2D en un cilindro circular para validar la metodología, y (4) flujo en un cavidad abierta, presentado para validar el método en casos de inestabilidades convectivamente inestables. Los tres últimos casos mencionados (2-4) se resolvieron con las ecuaciones de Navier-Stokes compresibles, utilizando un método Discontinuous Galerkin Spectral Element Method. Se obtuvo una buena concordancia para el caso de validación (3), cuando se comparó el nuevo método con resultados de la literatura. Además, este trabajo muestra que para el cálculo de los modos propios directos y adjuntos, así como para los mapas de sensibilidad, el uso de variables complejas es de suprema importancia para obtener una predicción precisa. El método descrito es aplicado al análisis para la estabilización de la estela generada por un disco actuador, que representa un modelo sencillo para hélices, rotores de helicópteros o turbinas eólicas. Se explora la primera bifurcación del flujo para un disco actuador, y se sugiere que está asociada a una inestabilidad de tipo Kelvin-Helmholtz, cuya estabilidad se controla con en el número de Reynolds y en la resistencia del disco actuador (o fuerza resistente). En primer lugar, se verifica que la disminución de la resistencia del disco tiene un efecto estabilizador parecido a una disminución del Reynolds. En segundo lugar, el análisis hidrodinmico discreto identifica dos regiones para la colocación de una fuerza puntual que controle las inestabilidades, una cerca del disco y otra en una zona aguas abajo. En tercer lugar, se muestra que la inclusión de un forzamiento localizado cerca del actuador produce una estabilización más eficiente que al forzar aguas abajo. El análisis de los campos de flujo controlados confirma que modificando el gradiente de velocidad cerca del actuador es más eficiente para estabilizar la estela. Estos resultados podrían proporcionar nuevas directrices para la estabilización de la estela de turbinas de viento o de marea cuando estén instaladas en un parque eólico y minimizar las interacciones no estacionarias entre turbinas. ABSTRACT A discrete framework for computing the global stability and sensitivity analysis to external perturbations for any set of partial differential equations is presented. In particular, a complex-step approximation is used to achieve near analytical accuracy for the evaluation of the Jacobian matrix. Sensitivity maps for the sensitivity to base flow modifications and to a steady force are computed to identify regions of the flow field where an input could have a stabilising effect. Four test cases are presented: (1) an analytical test case to prove the theory of the discrete framework, (2) a lid-driven cavity at low Reynolds case to show the improved accuracy in the calculation of the eigenvalues when using the complex-step approximation, (3) the 2D flow past a circular cylinder at just below the critical Reynolds number is used to validate the methodology, and finally, (4) the flow past an open cavity is presented to give an example of the discrete method applied to a convectively unstable case. The latter three (2–4) of the aforementioned cases were solved with the 2D compressible Navier–Stokes equations using a Discontinuous Galerkin Spectral Element Method. Good agreement was obtained for the validation test case, (3), with appropriate results in the literature. Furthermore, it is shown that for the calculation of the direct and adjoint eigenmodes and their sensitivity maps to external perturbations, the use of complex variables is paramount for obtaining an accurate prediction. An analysis for stabilising the wake past an actuator disc, which represents a simple model for propellers, helicopter rotors or wind turbines is also presented. We explore the first flow bifurcation for an actuator disc and it suggests that it is associated to a Kelvin- Helmholtz type instability whose stability relies on the Reynolds number and the flow resistance applied through the disc (or actuator forcing). First, we report that decreasing the disc resistance has a similar stabilising effect to an decrease in the Reynolds number. Second, a discrete sensitivity analysis identifies two regions for suitable placement of flow control forcing, one close to the disc and one far downstream where the instability originates. Third, we show that adding a localised forcing close to the actuator provides more stabilisation that forcing far downstream. The analysis of the controlled flow fields, confirms that modifying the velocity gradient close to the actuator is more efficient to stabilise the wake than controlling the sheared flow far downstream. An interesting application of these results is to provide guidelines for stabilising the wake of wind or tidal turbines when placed in an energy farm to minimise unsteady interactions.