14 resultados para Digital image classification
em Universidad Politécnica de Madrid
Resumo:
Monument conservation is related to the interaction between the original petrological parameters of the rock and external factors in the area where the building is sited, such as weather conditions, pollution, and so on. Depending on the environmental conditions and the characteristics of the materials used, different types of weathering predominate. In all, the appearance of surface crusts constitutes a first stage, whose origin can often be traced to the properties of the material itself. In the present study, different colours of “patinas” were distinguished by defining the threshold levels of greys associated with “pathology” in the histogram. These data were compared to background information and other parameters, such as mineralogical composition, porosity, and so on, as well as other visual signs of deterioration. The result is a map of the pathologies associated with “cover films” on monuments, which generate images by relating colour characteristics to desired properties or zones of interest.
Resumo:
Mining in the Iberian Pyrite Belt (IPB), the biggest VMS metallogenetic province known in the world to date, has to face a deep crisis in spite of the huge reserves still known after ≈5 000 years of production. This is due to several factors, as the difficult processing of complex Cu-Pb-Zn-Ag- Au ores, the exhaustion of the oxidation zone orebodies (the richest for gold, in gossan), the scarce demand for sulphuric acid in the world market, and harder environmental regulations. Of these factors, only the first and the last mentioned can be addressed by local ore geologists. A reactivation of mining can therefore only be achieved by an improved and more efficient ore processing, under the constraint of strict environmental controls. Digital image analysis of the ores, coupled to reflected light microscopy, provides a quantified and reliable mineralogical and textural characterization of the ores. The automation of the procedure for the first time furnishes the process engineers with real-time information, to improve the process and to preclude or control pollution; it can be applied to metallurgical tailings as well. This is shown by some examples of the IPB.
Resumo:
Digital image correlation (DIC) is applied to analyzing the deformation mechanisms under transverse compression in a fiber-reinforced composite. To this end, compression tests in a direction perpendicular to the fibers were carried out inside a scanning electron microscope and secondary electron images obtained at different magnifications during the test. Optimum DIC parameters to resolve the displacement and strain field were computed from numerical simulations of a model composite and they were applied to micrographs obtained at different magnifications (250_, 2000_, and 6000_). It is shown that DIC of low-magnification micrographs was able to capture the long range fluctuations in strain due to the presence of matrix-rich and fiber-rich zones, responsible for the onset of damage. At higher magnification, the strain fields obtained with DIC qualitatively reproduce the non-homogeneous deformation pattern due to the presence of stiff fibers dispersed in a compliant matrix and provide accurate results of the average composite strain. However, comparison with finite element simulations revealed that DIC was not able to accurately capture the average strain in each phase.
Resumo:
Technological and environmental problems related to ore processing are a serious limitation for sustainable development of mineral resources, particularly for countries / companies rich in ores, but with little access to sophisticated technology, e.g. in Latin America. Digital image analysis (DIA) can provide a simple, unexpensive and broadly applicable methodology to assess these problems, but this methodology has to be carefully defined, to produce reproducible and relevant information.
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi-Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles' state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle's state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle's state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain).
Resumo:
Matlab, uno de los paquetes de software matemático más utilizados actualmente en el mundo de la docencia y de la investigación, dispone de entre sus muchas herramientas una específica para el procesado digital de imágenes. Esta toolbox de procesado digital de imágenes está formada por un conjunto de funciones adicionales que amplían la capacidad del entorno numérico de Matlab y permiten realizar un gran número de operaciones de procesado digital de imágenes directamente a través del programa principal. Sin embargo, pese a que MATLAB cuenta con un buen apartado de ayuda tanto online como dentro del propio programa principal, la bibliografía disponible en castellano es muy limitada y en el caso particular de la toolbox de procesado digital de imágenes es prácticamente nula y altamente especializada, lo que requiere que los usuarios tengan una sólida formación en matemáticas y en procesado digital de imágenes. Partiendo de una labor de análisis de todas las funciones y posibilidades disponibles en la herramienta del programa, el proyecto clasificará, resumirá y explicará cada una de ellas a nivel de usuario, definiendo todas las variables de entrada y salida posibles, describiendo las tareas más habituales en las que se emplea cada función, comparando resultados y proporcionando ejemplos aclaratorios que ayuden a entender su uso y aplicación. Además, se introducirá al lector en el uso general de Matlab explicando las operaciones esenciales del programa, y se aclararán los conceptos más avanzados de la toolbox para que no sea necesaria una extensa formación previa. De este modo, cualquier alumno o profesor que se quiera iniciar en el procesado digital de imágenes con Matlab dispondrá de un documento que le servirá tanto para consultar y entender el funcionamiento de cualquier función de la toolbox como para implementar las operaciones más recurrentes dentro del procesado digital de imágenes. Matlab, one of the most used numerical computing environments in the world of research and teaching, has among its many tools a specific one for digital image processing. This digital image processing toolbox consists of a set of additional functions that extend the power of the digital environment of Matlab and allow to execute a large number of operations of digital image processing directly through the main program. However, despite the fact that MATLAB has a good help section both online and within the main program, the available bibliography is very limited in Castilian and is negligible and highly specialized in the particular case of the image processing toolbox, being necessary a strong background in mathematics and digital image processing. Starting from an analysis of all the available functions and possibilities in the program tool, the document will classify, summarize and explain each function at user level, defining all input and output variables possible, describing common tasks in which each feature is used, comparing results and providing illustrative examples to help understand its use and application. In addition, the reader will be introduced in the general use of Matlab explaining the essential operations within the program and clarifying the most advanced concepts of the toolbox so that an extensive prior formation will not be necessary. Thus, any student or teacher who wants to start digital image processing with Matlab will have a document that will serve to check and understand the operation of any function of the toolbox and also to implement the most recurrent operations in digital image processing.
Resumo:
Most of the present digital images processing methods are related with objective characterization of external properties as shape, form or colour. This information concerns objective characteristics of different bodies and is applied to extract details to perform several different tasks. But in some occasions, some other type of information is needed. This is the case when the image processing system is going to be applied to some operation related with living bodies. In this case, some other type of object information may be useful. As a matter of fact, it may give additional knowledge about its subjective properties. Some of these properties are object symmetry, parallelism between lines and the feeling of size. These types of properties concerns more to internal sensations of living beings when they are related with their environment than to the objective information obtained by artificial systems. This paper presents an elemental system able to detect some of the above-mentioned parameters. A first mathematical model to analyze these situations is reported. This theoretical model will give the possibility to implement a simple working system. The basis of this system is the use of optical logic cells, previously employed in optical computing.
Resumo:
A proposal for a model of the primary visual cortex is reported. It is structured with the basis of a simple unit cell able to perform fourteen pairs of different boolean functions corresponding to the two possible inputs. As a first step, a model of the retina is presented. Different types of responses, according to the different possibilities of interconnecting the building blocks, have been obtained. These responses constitute the basis for an initial configuration of the mammalian primary visual cortex. Some qualitative functions, as symmetry or size of an optical input, have been obtained. A proposal to extend this model to some higher functions, concludes the paper.
Resumo:
La mineralogía de procesos se ha convertido en los últimos años en una herramienta indispensable dentro del ámbito minero-metalúrgico debido fundamentalmente a la emergencia de la Geometalurgia. Esta disciplina en auge, a través de la integración de datos geológicos, mineros y metalúrgicos, proporciona la información necesaria para que el circuito de concentración mineral pueda responder de manera rápida y eficaz a la variabilidad mineralógica inherente a la geología del yacimiento. Para la generación del modelo geometalúrgico, la mineralogía de procesos debe aportar datos cuantitativos sobre los rasgos mineralógicos influyentes en el comportamiento de los minerales y para ello se apoya en el uso de sistemas de análisis mineralógico automatizado. Estos sistemas son capaces de proporcionar gran cantidad de datos mineralógicos de manera rápida y precisa. Sin embargo, cuando se trata de la caracterización de la textura, el mineralogista debe recurrir a descripciones cualitativas basadas en la observación, ya que los sistemas actuales no ofrecen información textural automatizada. Esta tesis doctoral surge precisamente para proporcionar de manera sistemática información textural relevante para los procesos de concentración mineral. La tesis tiene como objetivo principal la identificación y caracterización del tipo de intercrecimiento que un determinado mineral presenta en las partículas minerales, e inicialmente se han tenido en cuenta los siete tipos de intercrecimiento considerados como los más relevantes bajo el punto de vista del comportamiento de las partículas minerales durante flotación, lixiviación y molienda. Para alcanzar este objetivo se ha desarrollado una metodología basada en el diseño y cálculo de una serie de índices numéricos, a los que se ha llamado índices mineralúrgicos, que cumplen una doble función: por un lado, cada índice aporta información relevante para caracterizar los principales rasgos mineralógicos que gobiernan el comportamiento de las partículas minerales a lo largo de los procesos de concentración y por otro lado, estos índices sirven como variables discriminantes para identificar el tipo de intercrecimiento mineral mediante la aplicación de Análisis Discriminante. Dentro del conjunto de índices propuestos en este trabajo, se han considerado algunos índices propuestos por otros autores para su aplicación tanto en el ámbito de la mineralogía como en otros ámbitos de la ciencia de materiales. Se trata del Índice de Contigüidad (Gurland, 1958), Índice de Intercrecimiento (Amstutz y Giger, 1972) e Índice de Coordinación (Jeulin, 1981), adaptados en este caso para el análisis de partículas minerales. El diseño de los índices se ha basado en los principios básicos de la Estereología y el análisis digital de imagen, y su cálculo se ha llevado a cabo aplicando el método de interceptos lineales mediante la programación en MATLAB de varias rutinas. Este método estereológico permite recoger una serie de medidas a partir de las que es posible calcular varios parámetros, tanto estereológicos como geométricos, que han servido de base para calcular los índices mineralúrgicos. Para evaluar la capacidad discriminatoria de los índices mineralúrgicos se han seleccionado 200 casos en los que se puede reconocer de manera clara alguno de los siete tipos de intercrecimiento considerados inicialmente en este trabajo. Para cada uno de estos casos se han calculado los índices mineralúrgicos y se ha aplicado Análisis Discriminante, obteniendo un porcentaje de acierto en la clasificación del 95%. Esta cifra indica que los índices propuestos son discriminadores fiables del tipo de intercrecimiento. Una vez probada la capacidad discriminatoria de los índices, la metodología desarrollada ha sido aplicada para caracterizar una muestra de un concentrado de cobre procedente de la mina Kansanshi (Zambia). Esta caracterización se ha llevado a cabo para obtener la distribución de calcopirita según su tipo de intercrecimiento. La utilidad de esta distribución ha sido analizada bajo diferentes puntos de vista y en todos ellos los índices mineralúrgicos aportan información valiosa para caracterizar el comportamiento mineralúrgico de las partículas minerales. Los resultados derivados tanto del Análisis Discriminante como de la caracterización del concentrado de Kansanshi muestran la fiabilidad, utilidad y versatilidad de la metodología desarrollada, por lo que su integración como herramienta rutinaria en los sistemas actuales de análisis mineralógico pondría a disposición del mineralurgista gran cantidad de información textural complementaria a la información ofrecida por las técnicas actuales de caracterización mineralógica. ABSTRACT Process mineralogy has become in the last decades an essential tool in the mining and metallurgical sphere, especially driven by the emergence of Geometallurgy. This emergent discipline provides required information to efficiently tailor the circuit performance to the mineralogical variability inherent to ore deposits. To contribute to the Geometallurgical model, process mineralogy must provide quantitative data about the main mineralogical features implied in the minerallurgical behaviour of minerals. To address this characterisation, process mineralogy relies on automated systems. These systems are capable of providing a large amount of data quickly and accurately. However, when it comes to the characterisation of texture, mineralogists need to turn to qualitative descriptions based on observation, due to the fact that current systems can not offer quantitative textural information in a routine way. Aiming at the automated characterisation of textural information, this doctoral thesis arises to provide textural information relevant for concentration processes in a systematic way. The main objective of the thesis is the automated identification and characterisation of intergrowth types in mineral particles. Initially, the seven intergrowth types most relevant for flotation, leaching and grinding are considered. To achieve this goal, a methodology has been developed based on the computation of a set of numerical indices, which have been called minerallurgical indices. These indices have been designed with two main purposes: on the one hand, each index provides information to characterise the main mineralogical features which determine particle behaviour during concentration processes and, on the other hand, these indices are used as discriminant variables for identifying the intergrowth type by Discriminant Analysis. Along with the indices developed in this work, three indices proposed by other authors belonging to different fields of materials science have been also considered after being adapted to the analysis of mineral particles. These indices are Contiguity Index (Gurland, 1958), Intergrowth Index (Amstutz and Giger, 1972) and Coordination Index (Jeulin, 1981). The design of minerallurgical indices is based on the fundamental principles of Stereology and Digital Image Analysis. Their computation has been carried out using the linear intercepts method, implemented by means of MATLAB programming. This stereological method provides a set of measurements to obtain several parameters, both stereological and geometric. Based on these parameters, minerallurgical indices have been computed. For the assessment of the discriminant capacity of the developed indices, 200 cases have been selected according to their internal structure, so that one of the seven intergrowth types initially considered in this work can be easily recognised in any of their constituents. Minerallurgical indices have been computed for each case and used as discriminant variables. After applying discriminant analysis, 95% of the cases were correctly classified. This result shows that the proposed indices are reliable identifiers of intergrowth type. Once the discriminant power of the indices has been assessed, the developed methodology has been applied to characterise a copper concentrate sample from the Kansanshi copper mine (Zambia). This characterisation has been carried out to quantify the distribution of chalcopyrite with respect to intergrowth types. Different examples of the application of this distribution have been given to test the usefulness of the method. In all of them, the proposed indices provide valuable information to characterise the minerallurgical behaviour of mineral particles. Results derived from both Discriminant Analysis and the characterisation of the Kansanshi concentrate show the reliability, usefulness and versatility of the developed methodology. Therefore, its integration as a routine tool in current systems of automated mineralogical analysis should make available for minerallurgists a great deal of complementary information to treat the ore more efficiently.
Resumo:
The main problem to study vertical drainage from the moisture distribution, on a vertisol profile, is searching for suitable methods using these procedures. Our aim was to design a digital image processing methodology and its analysis to characterize the moisture content distribution of a vertisol profile. In this research, twelve soil pits were excavated on a ba re Mazic Pellic Vertisols ix of them in May 13/2011 and the rest in May 19 /2011 after a moderate rainfall event. Digital RGB images were taken from each vertisol pit using a Kodak? camera selecting a size of 1600x945 pixels. Each soil image was processed to homogenized brightness and then a spatial filter with several window sizes was applied to select the optimum one. The RGB image obtained were divided in each matrix color selecting the best thresholds for each one, maximum and minimum, to be applied and get a digital binary pattern. This one was analyzed by estimating two fractal scaling exponents box counting dimension D BC) and interface fractal dimension (D) In addition, three pre-fractal scaling coefficients were determinate at maximum resolution: total number of boxes intercepting the foreground pattern (A), fractal lacunarity (?1) and Shannon entropy S1). For all the images processed the spatial filter 9x9 was the optimum based on entropy, cluster and histogram criteria. Thresholds for each color were selected based on bimodal histograms.
Resumo:
Desde hace más de 20 años, muchos grupos de investigación trabajan en el estudio de técnicas de reconocimiento automático de expresiones faciales. En los últimos años, gracias al avance de las metodologías, ha habido numerosos avances que hacen posible una rápida detección de las caras presentes en una imagen y proporcionan algoritmos de clasificación de expresiones. En este proyecto se realiza un estudio sobre el estado del arte en reconocimiento automático de emociones, para conocer los diversos métodos que existen en el análisis facial y en el reconocimiento de la emoción. Con el fin de poder comparar estos métodos y otros futuros, se implementa una herramienta modular y ampliable y que además integra un método de extracción de características que consiste en la obtención de puntos de interés en la cara y dos métodos para clasificar la expresión, uno mediante comparación de desplazamientos de los puntos faciales, y otro mediante detección de movimientos específicos llamados unidades de acción. Para el entrenamiento del sistema y la posterior evaluación del mismo, se emplean las bases de datos Cohn-Kanade+ y JAFFE, de libre acceso a la comunidad científica. Después, una evaluación de estos métodos es llevada a cabo usando diferentes parámetros, bases de datos y variando el número de emociones. Finalmente, se extraen conclusiones del trabajo y su evaluación, proponiendo las mejoras necesarias e investigación futura. ABSTRACT. Currently, many research teams focus on the study of techniques for automatic facial expression recognition. Due to the appearance of digital image processing, in recent years there have been many advances in the field of face detection, feature extraction and expression classification. In this project, a study of the state of the art on automatic emotion recognition is performed to know the different methods existing in facial feature extraction and emotion recognition. To compare these methods, a user friendly tool is implemented. Besides, a feature extraction method is developed which consists in obtaining 19 facial feature points. Those are passed to two expression classifier methods, one based on point displacements, and one based on the recognition of facial Action Units. Cohn-Kanade+ and JAFFE databases, both freely available to the scientific community, are used for system training and evaluation. Then, an evaluation of the methods is performed with different parameters, databases and varying the number of emotions. Finally, conclusions of the work and its evaluation are extracted, proposing some necessary improvements and future research.