23 resultados para Diffractive optics
em Universidad Politécnica de Madrid
Resumo:
A 5-day training in Nonimaging Optics for European SME’s employees was carried out in June 2012 in the framework of the FP7 funded Support Action "SMETHODS". The training combined theoretical introduction and hands-on practice. The experience was very positive, and the lessons learned will improve the next scheduled sessions. Introduction The FP7 funded Support Action "SMETHODS" [1] is an initiative of seven European academic institutions to strengthen Europe's optics and photonics industry, which has started on 1 September 2011. Participation in training sessions is free for participants, who are selected with priority will be given to employees of small and medium sized European enterprises (SMEs). The consortium in SMETHODS is formed by seven partners that are the most prominent academic institutions in optical design in their countries. Through fully integrated collaborative training sessions, the consortium provides professional assistance as well as hands-on training in a variety of design tasks in four domains: (1) imaging optics, (2) nonimaging optics, (3) wave optics, and (4) diffractive optics. For each of this domains domain, 5-day training sessions are scheduled to be hold in different locations throughout Europe, four times in two years, the teach four times in a 2.5 years period.
Resumo:
The European HiPER project aims to demonstrate commercial viability of inertial fusion energy within the following two decades. This goal requires an extensive Research &Development program on materials for different applications (e.g., first wall, structural components and final optics). In this paper we will discuss our activities in the framework of HiPER to develop materials studies for the different areas of interest. The chamber first wall will have to withstand explosions of at least 100 MJ at a repetition rate of 5-10 Hz. If direct drive targets are used, a dry wall chamber operated in vacuum is preferable. In this situation the major threat for the wall stems from ions. For reasonably low chamber radius (5-10 m) new materials based on W and C are being investigated, e.g., engineered surfaces and nanostructured materials. Structural materials will be subject to high fluxes of neutrons leading to deleterious effects, such as, swelling. Low activation advanced steels as well as new nanostructured materials are being investigated. The final optics lenses will not survive the extreme ion irradiation pulses originated in the explosions. Therefore, mitigation strategies are being investigated. In addition, efforts are being carried out in understanding optimized conditions to minimize the loss of optical properties by neutron and gamma irradiation
Resumo:
In this work, two SMS algorithms are presented for an objective design with different selected ray-bundles: three meridian ray-bundles (3M) and one meridian and two skew ray-bundles (1M-2S), the latter from pin hole point of view, provides a better sampling of the phase space. Results obtained with different algorithms will be compared.
Resumo:
In this work the concept of integrating tracking in concentrating photovoltaics is briefly summarized and possible fields of application are classified. A previously proposed system setup relies on the use of two rotational symmetric laterally moving plano-convex lenses to achieve 500× concentration over an angular range of ±24 ◦ . However, the circular lens apertures are less suitable for application in lens array structures. A new design algorithm based on the Simultaneous Multiple Surface algorithm in three dimensions (SMS3D) demonstrates the ability to address this problem. Performance simulations show that the resulting non-rotational symmetric design outperforms its conventional rotational symmetric counterpart
Resumo:
In this work, two SMS algorithms are presented for an objective design with different selected ray-bundles: three meridian ray-bundles (3M) and one meridian and two skew ray-bundles (1M-2S), the latter from pin hole point of view, provides a better sampling of the phase space. Results obtained with different algorithms will be compared
Resumo:
The Simultaneous Multiple Surfaces (SMS) was developed as a design method in Nonimaging Optics during the 90s. Later, the method was extended for designing Imaging Optics. We present an overview of the method applied to imaging optics in planar (2D) geometry and compare the results with more classical designs based on achieving aplanatism of different orders. These classical designs are also viewed as particular cases of SMS designs. Systems with up to 4 aspheric surfaces are shown. The SMS design strategy is shown to perform always better than the classical design (in terms of image quality). Moreover, the SMS method is a direct method, i.e., it is not based in multi-parametric optimization techniques. This gives the SMS method an additional interest since it can be used for exploring solutions where the multiparameter techniques can get lost because of the multiple local minima
Resumo:
Optics detailed analysis of an improved collimation system for LED light sources
Resumo:
In this work, a new design concept of SMS moving optics is developed, in which the movement is no longer lateral but follows a curved trajectory calculated in the design process. Curved tracking trajectory helps to broaden the incident angle?s range significantly. We have chosen an afocal-type structure which aim to direct the parallel rays of large incident angles to parallel output rays. The RMS of the divergence angle of the output rays remains below 1 degree for an incident angular range of ±450. Potential applications of this beam-steering device are: skylights to provide steerable natural illumination, building integrated CPV systems, and steerable LED illumination.
Resumo:
In SSL general illumination, there is a clear trend to high flux packages with higher efficiency and higher CRI addressed with the use of multiple color chips and phosphors. However, such light sources require the optics provide color mixing, both in the near-field and far-field. This design problem is specially challenging for collimated luminaries, in which diffusers (which dramatically reduce the brightness) cannot be applied without enlarging the exit aperture too much. In this work we present first injection molded prototypes of a novel primary shell-shaped optics that have microlenses on both sides to provide Köhler integration. This shell is design so when it is placed on top of an inhomogeneous multichip Lambertian LED, creates a highly homogeneous virtual source (i.e, spatially and angularly mixed), also Lambertian, which is located in the same position with only small increment of the size (about 10-20%, so the average brightness is similar to the brightness of the source). This shell-mixer device is very versatile and permits now to use a lens or a reflector secondary optics to collimate the light as desired, without color separation effects. Experimental measurements have shown optical efficiency of the shell of 95%, and highly homogeneous angular intensity distribution of collimated beams, in good agreement with the ray-tracing simulations.
Resumo:
Lateral moving optics along straight path has already been studied in the past. However, their relative small angular range can be a limitation to potential applications. In this work, a new design concept of SMS moving optics is developed, in which the movement is no longer lateral but follows a curved trajectory, which is calculated in the design process. We have chosen an afocal system, which aim to direct the parallel rays of large incident angles to parallel output rays, and we have obtained that the RMS of the divergence angle of the output rays remains below 1 degree within a input angular range of ±45 output. Potential applications of this beam-steering device are: skylights to provide steerable natural illumination, building integrated CPV systems, and steerable LED illumination.
Resumo:
Final lenses in laser fusion plants. Challenges for the protection of the final lenses. Plasmonic nanoparticles. Radiation resistance
Resumo:
- PV and HCPV compete in the utility market - PV cost reduction has been dramatic through volume - A complete off-the-shelf optics solution by Evonik and LPI - Based on the best-in-class design: The FK concentrator
Resumo:
Optics and LEDs, design Methods, design examples, conclusions
Resumo:
Freeform surfaces are the key of the state-of-the-art nonimaging optics to solve the challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on the SMS 3D design method and Köhler homogenization.
Resumo:
Freeform surfaces are the key of the state-of-the-art nonimaging optics to solve the challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on the SMS 3D design method and Köhler homogenization.