3 resultados para Dialysis Technique Failure

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a method whereby, given mode and (upper approximation) type information, we can detect procedures and goals that can be guaranteed to not fail (i.e., to produce at least one solution or not termínate). The technique is based on an intuitively very simple notion, that of a (set of) tests "covering" the type of a set of variables. We show that the problem of determining a covering is undecidable in general, and give decidability and complexity results for the Herbrand and linear arithmetic constraint systems. We give sound algorithms for determining covering that are precise and efiicient in practice. Based on this information, we show how to identify goals and procedures that can be guaranteed to not fail at runtime. Applications of such non-failure information include programming error detection, program transiormations and parallel execution optimization, avoiding speculative parallelism and estimating lower bounds on the computational costs of goals, which can be used for granularity control. Finally, we report on an implementation of our method and show that better results are obtained than with previously proposed approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to present and validate a numerical technique for the simulation of the overtopping and onset of failure in rockfill dams due to mass sliding. This goal is achieved by coupling a fluid dynamic model for the simulation of the free surface and through-flow problems, with a numerical technique for the calculation of the rockfill response and deformation. Both the flow within the dam body and in its surroundings are taken into account. An extensive validation of the resulting computational method is performed by solving several failure problems on physical models of rockfill dams for which experimental results have been obtained by the authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting failures in a distributed system based on previous events through logistic regression is a standard approach in literature. This technique is not reliable, though, in two situations: in the prediction of rare events, which do not appear in enough proportion for the algorithm to capture, and in environments where there are too many variables, as logistic regression tends to overfit on this situations; while manually selecting a subset of variables to create the model is error- prone. On this paper, we solve an industrial research case that presented this situation with a combination of elastic net logistic regression, a method that allows us to automatically select useful variables, a process of cross-validation on top of it and the application of a rare events prediction technique to reduce computation time. This process provides two layers of cross- validation that automatically obtain the optimal model complexity and the optimal mode l parameters values, while ensuring even rare events will be correctly predicted with a low amount of training instances. We tested this method against real industrial data, obtaining a total of 60 out of 80 possible models with a 90% average model accuracy.