2 resultados para Development assistance
em Universidad Politécnica de Madrid
Resumo:
Decreasing the accidents on highway and urban environments is the main motivation for the research and developing of driving assistance systems, also called ADAS (Advanced Driver Assistance Systems). In recent years, there are many applications of these systems in commercial vehicles: ABS systems, Cruise Control (CC), parking assistance and warning systems (including GPS), among others. However, the implementation of driving assistance systems on the steering wheel is more limited, because of their complexity and sensitivity. This paper is focused in the development, test and implementation of a driver assistance system for controlling the steering wheel in curve zones. This system is divided in two levels: an inner control loop which permits to execute the position and speed target, softening the action over the steering wheel, and a second control outer loop (controlling for fuzzy logic) that sends the reference to the inner loop according the environment and vehicle conditions. The tests have been done in different curves and speeds. The system has been proved in a commercial vehicle with satisfactory results.
Resumo:
The paper presents the main elements of a project entitled ICT-Emissions that aims at developing a novel methodology to evaluate the impact of ICT-related measures on mobility, vehicle energy consumption and CO2 emissions of vehicle fleets at the local scale, in order to promote the wider application of the most appropriate ICT measures. The proposed methodology combines traffic and emission modelling at micro and macro scales. These will be linked with interfaces and submodules which will be specifically designed and developed. A number of sources are available to the consortium to obtain the necessary input data. Also, experimental campaigns are offered to fill in gaps of information in traffic and emission patterns. The application of the methodology will be demonstrated using commercially available software. However, the methodology is developed in such a way as to enable its implementation by a variety of emission and traffic models. Particular emphasis is given to (a) the correct estimation of driver behaviour, as a result of traffic-related ICT measures, (b) the coverage of a large number of current vehicle technologies, including ICT systems, and (c) near future technologies such as hybrid, plug-in hybrids, and electric vehicles. The innovative combination of traffic, driver, and emission models produces a versatile toolbox that can simulate the impact on energy and CO2 of infrastructure measures (traffic management, dynamic traffic signs, etc.), driver assistance systems and ecosolutions (speed/cruise control, start/stop systems, etc.) or a combination of measures (cooperative systems).The methodology is validated by application in the Turin area and its capacity is further demonstrated by application in real world conditions in Madrid and Rome.