5 resultados para Detectores óticos
em Universidad Politécnica de Madrid
Resumo:
El análisis de vídeo laparoscópico ofrece nuevas posibilidades a la navegación quirúrgica al garantizar una incorporación mínima de tecnología en quirófano, evitando así alterar la ergonomía y los flujos de trabajo de las intervenciones. Una de sus principales ventajas es que puede servir como fuente de datos para reconstruir tridimensionalmente la escena laparoscópica, lo que permite dotar al cirujano de la sensación de profundidad perdida en este tipo de cirugía. En el presente trabajo de investigación se comparan dos detectores de puntos singulares, SIFT y SURF, para estimar cuál de los dos podría integrarse en un algoritmo de cálculo de coordenadas 3D, MonoSLAM, basado en la detección y el seguimiento de estos puntos singulares en los fotogramas del vídeo. Los resultados obtenidos posicionan a SURF como la mejor opción gracias a su rapidez y a su mayor capacidad de discriminación entre estructuras anatómicas e instrumental quirúrgico.
Resumo:
Vivimos momentos de gran apelación verbal a principios éticos, (hay dinero ético y fondos de inversión éticos para tranquilizar la conciencia de vivir en sociedades de comportamiento poco ético) pero los hechos muestran que son malos tiempos para la ética (parafraseando la canción del grupo gallego Golpes Bajos, con el cantante Germán Coppini).
Resumo:
La ecología no solamente ha puesto de manifiesto problemas ambientales, sino que ha confirmado la necesidad de una nueva armonía entre los propios seres humanos y de éstos con la naturaleza y con todos los seres que la habitan. Es necesario un nuevo contrato que determine nuestras relaciones con la Naturaleza (Serrs1), y una nueva Ética para nuestras vidas (Guattari2). La ética medioambiental nos ha dado una visión universal y supra-generacional de la gestión de la naturaleza y como consecuencia, una nueva forma de construir nuestra ‘segunda’ Naturaleza, que es la arquitectura. ¿Qué es lo esencial que esta nueva ética exige para la arquitectura? Este es un momento crucial para reconsiderar los objetivos de la arquitectura, porque lo ‘eco’ está produciendo grandes cambios. ¿Implica esta era post-ecológica una particular ética, es decir, referida a sus fines y medios? ¿Porqué, para qué, para quién, cómo debemos hacer la arquitectura de nuestro tiempo? Es momento de afrontar críticamente el discurso de la eco-arquitectura, e incluso de repensar los propios límites de la arquitectura. El desarrollo actual del conocimiento medioambiental es esencialmente técnico y utilitario, pero ¿es el reto solamente técnico?¿Es suficiente la suma de lo medioambiental-social-económico-cultural para definirla? ¿Hay claves que nos puedan dar la dimensión ética de esta aproximación técnica-empírica? ¿Sabemos lo que estamos haciendo cuando aplicamos este conocimiento? Y, sobre todo, ¿cuál es el sentido de lo que estamos haciendo? La tesis que se propone puede resumirse: De acuerdo con el actual conocimiento que tenemos de la Naturaleza, la Arquitectura de nuestro tiempo deber reconsiderar sus fines y medios, puesto que la ética medioambiental está definiendo nuevos objetivos. Para fundamentar y profundizar en esta afirmación la tesis analiza cómo son hoy día las relaciones entre Ética-Naturaleza-Arquitectura (Fig.1), lo que facilitará las claves de cuáles son los criterios éticos (en cuanto a fines y medios) que deben definir la arquitectura del tiempo de la ecología. ABSTRACT Ecology shows us not only environmental problems; it shows that we need a new balance and harmony between individuals, beings, communities and Nature. We need a new contract with Nature according to Serres576, and a new Ethics for our lives according to Guattari577. Environmental ethics have given us a universal and supra-generational vision of the management of our Nature and, as a consequence, a new way to construct our ‘second’ nature, which is architecture. What is essential for this new architecture that the new ethics demand? This is a critical moment to reconsider the object of architecture, because the ‘eco’ is making significant changes in it. Are there any specifically ethical concerns (ends and means) in the post-ecological era? Why, for what, for whom, how should we make architecture in our times? This is the time to approach the eco-architectural discourse critically and to question the current boundaries of architecture itself: Where is eco-architecture going? The current development of environmental knowledge is essentially technical and utilitarian, but it is its technical aspect the only challenge? Is the sum of environmental-social-economic aspects enough to define it? Are there any clues which can give an ethical sense to this technical-empirical approach? Do we know what we are doing when we apply this knowledge? And overall, what is the meaning of what we are doing? Exploring this subject, this thesis makes a statement: In accordance with the actual knowledge of Nature, Architecture of our time must reconsider its ends and means, since the environmental ethics is defining new objectives. To support that, the thesis analyzes what the relationships between Ethics –Nature- Architecture (Fig. 53) are like nowadays, this will provide the clues of which ethical criteria (ends and means) must architecture of an ecological era define.
Resumo:
El objetivo de este trabajo fin de grado (TFG) consiste en estudiar algunas técnicas de análisis tiempo-frecuencia y aplicarlas a la detección de señales radar. Estas técnicas se incorporan en los actuales equipos de guerra electrónica radar, tales como los interceptadores digitales. La principal motivación de estos equipos consiste en detectar y localizar las fuentes radiantes enemigas e intentar obtener cierta información de las señales interceptadas, tal como, la dirección de llegada (DOA, Direction Of Arrival), el tiempo de llegada (TOA, Time Of Arrival), amplitud de pulso (PA, Pulse Amplitude), anchura de pulso (PW, Pulse Width), frecuencia instantánea (IF, Instantaneous Frequency) o modulación intrapulso. Se comenzará con un estudio detallado de la Short-Time Fourier Transform (STFT),dado su carácter lineal es la técnica más explotada actualmente. Este algoritmo presenta una mala resolución conjunta tiempo-frecuencia. Este hecho provoca el estudio complementario de una segunda técnica de análisis basada en la distribución de Wigner-Ville (WVD). Mediante este método se logra una resolución optima tiempo-frecuencia. A cambio, se obtienen términos cruzados indeseados debido a su carácter cuadrático. Uno de los objetivos de este TFG reside en calcular la sensibilidad de los sistemas de detección analizados a partir de las técnicas tiempo-frecuencia. Se hará uso del método de Monte Carlo para estimar ciertos parámetros estadísticos del sistema tales como la probabilidad de falsa alarma y de detección. Así mismo, se llevará a cabo el estudio completo de un receptor digital de guerra electrónica a fin de comprender el funcionamiento de todos los subsistemas que componen el conjunto (STFT/WVD, medidor instantáneo de frecuencias, procesamiento no coherente y generación de descriptores de pulso). Por último, se analizará su comportamiento frente a diferentes señales Radar (FM-lineal, BPSK, chirp o Barker). Se utilizará para ello la herramienta Matlab.
Resumo:
Esta tesis recoje un trabajo experimental centrado en profundizar sobre el conocimiento de los bloques detectores monolíticos como alternativa a los detectores segmentados para tomografía por emisión de positrones (Positron Emission Tomography, PET). El trabajo llevado a cabo incluye el desarrollo, la caracterización, la puesta a punto y la evaluación de prototipos demostradores PET utilizando bloques monolíticos de ortosilicato de lutecio ytrio dopado con cerio (Cerium-Doped Lutetium Yttrium Orthosilicate, LYSO:Ce) usando sensores compatibles con altos campos magnéticos, tanto fotodiodos de avalancha (Avalanche Photodiodes, APDs) como fotomultiplicadores de silicio (Silicon Photomultipliers, SiPMs). Los prototipos implementados con APDs se construyeron para estudiar la viabilidad de un prototipo PET de alta sensibilidad previamente simulado, denominado BrainPET. En esta memoria se describe y caracteriza la electrónica frontal integrada utilizada en estos prototipos junto con la electrónica de lectura desarrollada específicamente para los mismos. Se muestran los montajes experimentales para la obtención de las imágenes tomográficas PET y para el entrenamiento de los algoritmos de red neuronal utilizados para la estimación de las posiciones de incidencia de los fotones γ sobre la superficie de los bloques monolíticos. Con el prototipo BrainPET se obtuvieron resultados satisfactorios de resolución energética (13 % FWHM), precisión espacial de los bloques monolíticos (~ 2 mm FWHM) y resolución espacial de la imagen PET de 1,5 - 1,7 mm FWHM. Además se demostró una capacidad resolutiva en la imagen PET de ~ 2 mm al adquirir simultáneamente imágenes de fuentes radiactivas separadas a distancias conocidas. Sin embargo, con este prototipo se detectaron también dos limitaciones importantes. En primer lugar, se constató una falta de flexibilidad a la hora de trabajar con un circuito integrado de aplicación específica (Application Specific Integrated Circuit, ASIC) cuyo diseño electrónico no era propio sino comercial, unido al elevado coste que requieren las modificaciones del diseño de un ASIC con tales características. Por otra parte, la caracterización final de la electrónica integrada del BrainPET mostró una resolución temporal con amplio margen de mejora (~ 13 ns FWHM). Tomando en cuenta estas limitaciones obtenidas con los prototipos BrainPET, junto con la evolución tecnológica hacia matrices de SiPM, el conocimiento adquirido con los bloques monolíticos se trasladó a la nueva tecnología de sensores disponible, los SiPMs. A su vez se inició una nueva estrategia para la electrónica frontal, con el ASIC FlexToT, un ASIC de diseño propio basado en un esquema de medida del tiempo sobre umbral (Time over Threshold, ToT), en donde la duración del pulso de salida es proporcional a la energía depositada. Una de las características más interesantes de este esquema es la posibilidad de manejar directamente señales de pulsos digitales, en lugar de procesar la amplitud de las señales analógicas. Con esta arquitectura electrónica se sustituyen los conversores analógicos digitales (Analog to Digital Converter, ADCs) por conversores de tiempo digitales (Time to Digital Converter, TDCs), pudiendo implementar éstos de forma sencilla en matrices de puertas programmable ‘in situ’ (Field Programmable Gate Array, FPGA), reduciendo con ello el consumo y la complejidad del diseño. Se construyó un nuevo prototipo demostrador FlexToT para validar dicho ASIC para bloques monolíticos o segmentados. Se ha llevado a cabo el diseño y caracterización de la electrónica frontal necesaria para la lectura del ASIC FlexToT, evaluando su linealidad y rango dinámico, el comportamiento frente a ruido así como la no linealidad diferencial obtenida con los TDCs implementados en la FPGA. Además, la electrónica presentada en este trabajo es capaz de trabajar con altas tasas de actividad y de discriminar diferentes centelleadores para aplicaciones phoswich. El ASIC FlexToT proporciona una excelente resolución temporal en coincidencia para los eventos correspondientes con el fotopico de 511 keV (128 ps FWHM), solventando las limitaciones de resolución temporal del prototipo BrainPET. Por otra parte, la resolución energética con bloques monolíticos leidos por ASICs FlexToT proporciona una resolución energética de 15,4 % FWHM a 511 keV. Finalmente, se obtuvieron buenos resultados en la calidad de la imagen PET y en la capacidad resolutiva del demostrador FlexToT, proporcionando resoluciones espaciales en el centro del FoV en torno a 1,4 mm FWHM. ABSTRACT This thesis is focused on the development of experimental activities used to deepen the knowledge of monolithic detector blocks as an alternative to segmented detectors for Positron Emission Tomography (PET). It includes the development, characterization, setting up, running and evaluation of PET demonstrator prototypes with monolithic detector blocks of Cerium-doped Lutetium Yttrium Orthosilicate (LYSO:Ce) using magnetically compatible sensors such as Avalanche Photodiodes (APDs) and Silicon Photomultipliers (SiPMs). The prototypes implemented with APDs were constructed to validate the viability of a high-sensitivity PET prototype that had previously been simulated, denominated BrainPET. This work describes and characterizes the integrated front-end electronics used in these prototypes, as well as the electronic readout system developed especially for them. It shows the experimental set-ups to obtain the tomographic PET images and to train neural networks algorithms used for position estimation of photons impinging on the surface of monolithic blocks. Using the BrainPET prototype, satisfactory energy resolution (13 % FWHM), spatial precision of monolithic blocks (~ 2 mm FWHM) and spatial resolution of the PET image (1.5 – 1.7 mm FWHM) in the center of the Field of View (FoV) were obtained. Moreover, we proved the imaging capabilities of this demonstrator with extended sources, considering the acquisition of two simultaneous sources of 1 mm diameter placed at known distances. However, some important limitations were also detected with the BrainPET prototype. In the first place, it was confirmed that there was a lack of flexibility working with an Application Specific Integrated Circuit (ASIC) whose electronic design was not own but commercial, along with the high cost required to modify an ASIC design with such features. Furthermore, the final characterization of the BrainPET ASIC showed a timing resolution with room for improvement (~ 13 ns FWHM). Taking into consideration the limitations obtained with the BrainPET prototype, along with the technological evolution in magnetically compatible devices, the knowledge acquired with the monolithic blocks were transferred to the new technology available, the SiPMs. Moreover, we opted for a new strategy in the front-end electronics, the FlexToT ASIC, an own design ASIC based on a Time over Threshold (ToT) scheme. One of the most interesting features underlying a ToT architecture is the encoding of the analog input signal amplitude information into the duration of the output signals, delivering directly digital pulses. The electronic architecture helps substitute the Analog to Digital Converters (ADCs) for Time to Digital Converters (TDCs), and they are easily implemented in Field Programmable Gate Arrays (FPGA), reducing the consumption and the complexity of the design. A new prototype demonstrator based on SiPMs was implemented to validate the FlexToT ASIC for monolithic or segmented blocks. The design and characterization of the necessary front-end electronic to read-out the signals from the ASIC was carried out by evaluating its linearity and dynamic range, its performance with an external noise signal, as well as the differential nonlinearity obtained with the TDCs implemented in the FPGA. Furthermore, the electronic presented in this work is capable of working at high count rates and discriminates different phoswich scintillators. The FlexToT ASIC provides an excellent coincidence time resolution for events that correspond to 511 keV photopeak (128 ps FWHM), resolving the limitations of the poor timing resolution of the BrainPET prototype. Furthermore, the energy resolution with monolithic blocks read by FlexToT ASICs provides an energy resolution of 15.4 % FWHM at 511 keV. Finally, good results were obtained in the quality of the PET image and the resolving power of the FlexToT demonstrator, providing spatial resolutions in the centre of the FoV at about 1.4 mm FWHM.