20 resultados para Detection algorithms

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite that Critical Infrastructures (CIs) security and surveillance are a growing concern for many countries and companies, Multi Robot Systems (MRSs) have not been yet broadly used in this type of facilities. This dissertation presents a novel study of the challenges arisen by the implementation of this type of systems and proposes solutions to specific problems. First, a comprehensive analysis of different types of CIs has been carried out, emphasizing the influence of the different characteristics of the facilities in the design of a security and surveillance MRS. One of the most important needs for the surveillance of a CI is the detection of intruders. From a technical point of view this problem can be abstracted as equivalent to the Detection and Tracking of Mobile Objects (DATMO). This dissertation proposes algorithms to solve this specific problem in a CI environment. Using 3D range images of the environment as input data, two detection algorithms for ground robots have been developed. These detection algorithms provide a list of moving objects in the robot detection area. Direct image differentiation and computer vision techniques are used when the robot is static. Alternatively, multi-layer ground reconstructions are compared to detect the dynamic objects when the robot is moving. Since CIs usually spread over large areas, it is very useful to incorporate aerial vehicles in the surveillance MRS. Therefore, a moving object detection algorithm for aerial vehicles has been also developed. This algorithm compares the real optical flow obtained from a down-face oriented camera with an artificial optical flow computed using a RANSAC based homography matrix. Two tracking algorithms have been developed to follow the moving objects trajectories. These algorithms can efficiently handle occlusions and crossings, as well as exchange information among robots. The multirobot tracking can be applied to any type of communication structure: centralized, decentralized or a combination of both. Even more, the developed tracking algorithms are independent of the detection algorithms and could be potentially used with other detection procedures or even with static sensors, such as cameras. In addition, using the 3D point clouds available to the robots, a relative localization algorithm has been developed to improve the position estimation of a given robot with observations from other robots. All the developed algorithms have been extensively tested in different simulated CIs using the Webots robotics simulator. Furthermore, the algorithms have also been validated with real robots operating in real scenarios. In conclusion, this dissertation presents a multirobot approach to Critical Infrastructure Surveillance, mainly focusing on Detecting and Tracking Dynamic Objects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En la interacción con el entorno que nos rodea durante nuestra vida diaria (utilizar un cepillo de dientes, abrir puertas, utilizar el teléfono móvil, etc.) y en situaciones profesionales (intervenciones médicas, procesos de producción, etc.), típicamente realizamos manipulaciones avanzadas que incluyen la utilización de los dedos de ambas manos. De esta forma el desarrollo de métodos de interacción háptica multi-dedo dan lugar a interfaces hombre-máquina más naturales y realistas. No obstante, la mayoría de interfaces hápticas disponibles en el mercado están basadas en interacciones con un solo punto de contacto; esto puede ser suficiente para la exploración o palpación del entorno pero no permite la realización de tareas más avanzadas como agarres. En esta tesis, se investiga el diseño mecánico, control y aplicaciones de dispositivos hápticos modulares con capacidad de reflexión de fuerzas en los dedos índice, corazón y pulgar del usuario. El diseño mecánico de la interfaz diseñada, ha sido optimizado con funciones multi-objetivo para conseguir una baja inercia, un amplio espacio de trabajo, alta manipulabilidad y reflexión de fuerzas superiores a 3 N en el espacio de trabajo. El ancho de banda y la rigidez del dispositivo se han evaluado mediante simulación y experimentación real. Una de las áreas más importantes en el diseño de estos dispositivos es el efector final, ya que es la parte que está en contacto con el usuario. Durante este trabajo se ha diseñado un dedal de bajo peso, adaptable a diferentes usuarios que, mediante la incorporación de sensores de contacto, permite estimar fuerzas normales y tangenciales durante la interacción con entornos reales y virtuales. Para el diseño de la arquitectura de control, se estudiaron los principales requisitos para estos dispositivos. Entre estos, cabe destacar la adquisición, procesado e intercambio a través de internet de numerosas señales de control e instrumentación; la computación de equaciones matemáticas incluyendo la cinemática directa e inversa, jacobiana, algoritmos de detección de agarres, etc. Todos estos componentes deben calcularse en tiempo real garantizando una frecuencia mínima de 1 KHz. Además, se describen sistemas para manipulación de precisión virtual y remota; así como el diseño de un método denominado "desacoplo cinemático iterativo" para computar la cinemática inversa de robots y la comparación con otros métodos actuales. Para entender la importancia de la interacción multimodal, se ha llevado a cabo un estudio para comprobar qué estímulos sensoriales se correlacionan con tiempos de respuesta más rápidos y de mayor precisión. Estos experimentos se desarrollaron en colaboración con neurocientíficos del instituto Technion Israel Institute of Technology. Comparando los tiempos de respuesta en la interacción unimodal (auditiva, visual y háptica) con combinaciones bimodales y trimodales de los mismos, se demuestra que el movimiento sincronizado de los dedos para generar respuestas de agarre se basa principalmente en la percepción háptica. La ventaja en el tiempo de procesamiento de los estímulos hápticos, sugiere que los entornos virtuales que incluyen esta componente sensorial generan mejores contingencias motoras y mejoran la credibilidad de los eventos. Se concluye que, los sistemas que incluyen percepción háptica dotan a los usuarios de más tiempo en las etapas cognitivas para rellenar información de forma creativa y formar una experiencia más rica. Una aplicación interesante de los dispositivos hápticos es el diseño de nuevos simuladores que permitan entrenar habilidades manuales en el sector médico. En colaboración con fisioterapeutas de Griffith University en Australia, se desarrolló un simulador que permite realizar ejercicios de rehabilitación de la mano. Las propiedades de rigidez no lineales de la articulación metacarpofalange del dedo índice se estimaron mediante la utilización del efector final diseñado. Estos parámetros, se han implementado en un escenario que simula el comportamiento de la mano humana y que permite la interacción háptica a través de esta interfaz. Las aplicaciones potenciales de este simulador están relacionadas con entrenamiento y educación de estudiantes de fisioterapia. En esta tesis, se han desarrollado nuevos métodos que permiten el control simultáneo de robots y manos robóticas en la interacción con entornos reales. El espacio de trabajo alcanzable por el dispositivo háptico, se extiende mediante el cambio de modo de control automático entre posición y velocidad. Además, estos métodos permiten reconocer el gesto del usuario durante las primeras etapas de aproximación al objeto para su agarre. Mediante experimentos de manipulación avanzada de objetos con un manipulador y diferentes manos robóticas, se muestra que el tiempo en realizar una tarea se reduce y que el sistema permite la realización de la tarea con precisión. Este trabajo, es el resultado de una colaboración con investigadores de Harvard BioRobotics Laboratory. ABSTRACT When we interact with the environment in our daily life (using a toothbrush, opening doors, using cell-phones, etc.), or in professional situations (medical interventions, manufacturing processes, etc.) we typically perform dexterous manipulations that involve multiple fingers and palm for both hands. Therefore, multi-Finger haptic methods can provide a realistic and natural human-machine interface to enhance immersion when interacting with simulated or remote environments. Most commercial devices allow haptic interaction with only one contact point, which may be sufficient for some exploration or palpation tasks but are not enough to perform advanced object manipulations such as grasping. In this thesis, I investigate the mechanical design, control and applications of a modular haptic device that can provide force feedback to the index, thumb and middle fingers of the user. The designed mechanical device is optimized with a multi-objective design function to achieve a low inertia, a large workspace, manipulability, and force-feedback of up to 3 N within the workspace; the bandwidth and rigidity for the device is assessed through simulation and real experimentation. One of the most important areas when designing haptic devices is the end-effector, since it is in contact with the user. In this thesis the design and evaluation of a thimble-like, lightweight, user-adaptable, and cost-effective device that incorporates four contact force sensors is described. This design allows estimation of the forces applied by a user during manipulation of virtual and real objects. The design of a real-time, modular control architecture for multi-finger haptic interaction is described. Requirements for control of multi-finger haptic devices are explored. Moreover, a large number of signals have to be acquired, processed, sent over the network and mathematical computations such as device direct and inverse kinematics, jacobian, grasp detection algorithms, etc. have to be calculated in Real Time to assure the required high fidelity for the haptic interaction. The Hardware control architecture has different modules and consists of an FPGA for the low-level controller and a RT controller for managing all the complex calculations (jacobian, kinematics, etc.); this provides a compact and scalable solution for the required high computation capabilities assuring a correct frequency rate for the control loop of 1 kHz. A set-up for dexterous virtual and real manipulation is described. Moreover, a new algorithm named the iterative kinematic decoupling method was implemented to solve the inverse kinematics of a robotic manipulator. In order to understand the importance of multi-modal interaction including haptics, a subject study was carried out to look for sensory stimuli that correlate with fast response time and enhanced accuracy. This experiment was carried out in collaboration with neuro-scientists from Technion Israel Institute of Technology. By comparing the grasping response times in unimodal (auditory, visual, and haptic) events with the response times in events with bimodal and trimodal combinations. It is concluded that in grasping tasks the synchronized motion of the fingers to generate the grasping response relies on haptic cues. This processing-speed advantage of haptic cues suggests that multimodalhaptic virtual environments are superior in generating motor contingencies, enhancing the plausibility of events. Applications that include haptics provide users with more time at the cognitive stages to fill in missing information creatively and form a richer experience. A major application of haptic devices is the design of new simulators to train manual skills for the medical sector. In collaboration with physical therapists from Griffith University in Australia, we developed a simulator to allow hand rehabilitation manipulations. First, the non-linear stiffness properties of the metacarpophalangeal joint of the index finger were estimated by using the designed end-effector; these parameters are implemented in a scenario that simulates the behavior of the human hand and that allows haptic interaction through the designed haptic device. The potential application of this work is related to educational and medical training purposes. In this thesis, new methods to simultaneously control the position and orientation of a robotic manipulator and the grasp of a robotic hand when interacting with large real environments are studied. The reachable workspace is extended by automatically switching between rate and position control modes. Moreover, the human hand gesture is recognized by reading the relative movements of the index, thumb and middle fingers of the user during the early stages of the approximation-to-the-object phase and then mapped to the robotic hand actuators. These methods are validated to perform dexterous manipulation of objects with a robotic manipulator, and different robotic hands. This work is the result of a research collaboration with researchers from the Harvard BioRobotics Laboratory. The developed experiments show that the overall task time is reduced and that the developed methods allow for full dexterity and correct completion of dexterous manipulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objeto de esta Tesis doctoral es el desarrollo de una metodologia para la deteccion automatica de anomalias a partir de datos hiperespectrales o espectrometria de imagen, y su cartografiado bajo diferentes condiciones tipologicas de superficie y terreno. La tecnologia hiperespectral o espectrometria de imagen ofrece la posibilidad potencial de caracterizar con precision el estado de los materiales que conforman las diversas superficies en base a su respuesta espectral. Este estado suele ser variable, mientras que las observaciones se producen en un numero limitado y para determinadas condiciones de iluminacion. Al aumentar el numero de bandas espectrales aumenta tambien el numero de muestras necesarias para definir espectralmente las clases en lo que se conoce como Maldicion de la Dimensionalidad o Efecto Hughes (Bellman, 1957), muestras habitualmente no disponibles y costosas de obtener, no hay mas que pensar en lo que ello implica en la Exploracion Planetaria. Bajo la definicion de anomalia en su sentido espectral como la respuesta significativamente diferente de un pixel de imagen respecto de su entorno, el objeto central abordado en la Tesis estriba primero en como reducir la dimensionalidad de la informacion en los datos hiperespectrales, discriminando la mas significativa para la deteccion de respuestas anomalas, y segundo, en establecer la relacion entre anomalias espectrales detectadas y lo que hemos denominado anomalias informacionales, es decir, anomalias que aportan algun tipo de informacion real de las superficies o materiales que las producen. En la deteccion de respuestas anomalas se asume un no conocimiento previo de los objetivos, de tal manera que los pixeles se separan automaticamente en funcion de su informacion espectral significativamente diferenciada respecto de un fondo que se estima, bien de manera global para toda la escena, bien localmente por segmentacion de la imagen. La metodologia desarrollada se ha centrado en la implicacion de la definicion estadistica del fondo espectral, proponiendo un nuevo enfoque que permite discriminar anomalias respecto fondos segmentados en diferentes grupos de longitudes de onda del espectro, explotando la potencialidad de separacion entre el espectro electromagnetico reflectivo y emisivo. Se ha estudiado la eficiencia de los principales algoritmos de deteccion de anomalias, contrastando los resultados del algoritmo RX (Reed and Xiaoli, 1990) adoptado como estandar por la comunidad cientifica, con el metodo UTD (Uniform Targets Detector), su variante RXD-UTD, metodos basados en subespacios SSRX (Subspace RX) y metodo basados en proyecciones de subespacios de imagen, como OSPRX (Orthogonal Subspace Projection RX) y PP (Projection Pursuit). Se ha desarrollado un nuevo metodo, evaluado y contrastado por los anteriores, que supone una variacion de PP y describe el fondo espectral mediante el analisis discriminante de bandas del espectro electromagnetico, separando las anomalias con el algortimo denominado Detector de Anomalias de Fondo Termico o DAFT aplicable a sensores que registran datos en el espectro emisivo. Se han evaluado los diferentes metodos de deteccion de anomalias en rangos del espectro electromagnetico del visible e infrarrojo cercano (Visible and Near Infrared-VNIR), infrarrojo de onda corta (Short Wavelenght Infrared-SWIR), infrarrojo medio (Meadle Infrared-MIR) e infrarrojo termico (Thermal Infrared-TIR). La respuesta de las superficies en las distintas longitudes de onda del espectro electromagnetico junto con su entorno, influyen en el tipo y frecuencia de las anomalias espectrales que puedan provocar. Es por ello que se han utilizado en la investigacion cubos de datos hiperepectrales procedentes de los sensores aeroportados cuya estrategia y diseno en la construccion espectrometrica de la imagen difiere. Se han evaluado conjuntos de datos de test de los sensores AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) y MASTER (MODIS/ASTER Simulator). Se han disenado experimentos sobre ambitos naturales, urbanos y semiurbanos de diferente complejidad. Se ha evaluado el comportamiento de los diferentes detectores de anomalias a traves de 23 tests correspondientes a 15 areas de estudio agrupados en 6 espacios o escenarios: Urbano - E1, Semiurbano/Industrial/Periferia Urbana - E2, Forestal - E3, Agricola - E4, Geologico/Volcanico - E5 y Otros Espacios Agua, Nubes y Sombras - E6. El tipo de sensores evaluados se caracteriza por registrar imagenes en un amplio rango de bandas, estrechas y contiguas, del espectro electromagnetico. La Tesis se ha centrado en el desarrollo de tecnicas que permiten separar y extraer automaticamente pixeles o grupos de pixeles cuya firma espectral difiere de manera discriminante de las que tiene alrededor, adoptando para ello como espacio muestral parte o el conjunto de las bandas espectrales en las que ha registrado radiancia el sensor hiperespectral. Un factor a tener en cuenta en la investigacion ha sido el propio instrumento de medida, es decir, la caracterizacion de los distintos subsistemas, sensores imagen y auxiliares, que intervienen en el proceso. Para poder emplear cuantitativamente los datos medidos ha sido necesario definir las relaciones espaciales y espectrales del sensor con la superficie observada y las potenciales anomalias y patrones objetivos de deteccion. Se ha analizado la repercusion que en la deteccion de anomalias tiene el tipo de sensor, tanto en su configuracion espectral como en las estrategias de diseno a la hora de registrar la radiacion prodecente de las superficies, siendo los dos tipos principales de sensores estudiados los barredores o escaneres de espejo giratorio (whiskbroom) y los barredores o escaneres de empuje (pushbroom). Se han definido distintos escenarios en la investigacion, lo que ha permitido abarcar una amplia variabilidad de entornos geomorfologicos y de tipos de coberturas, en ambientes mediterraneos, de latitudes medias y tropicales. En resumen, esta Tesis presenta una tecnica de deteccion de anomalias para datos hiperespectrales denominada DAFT en su variante de PP, basada en una reduccion de la dimensionalidad proyectando el fondo en un rango de longitudes de onda del espectro termico distinto de la proyeccion de las anomalias u objetivos sin firma espectral conocida. La metodologia propuesta ha sido probada con imagenes hiperespectrales reales de diferentes sensores y en diferentes escenarios o espacios, por lo tanto de diferente fondo espectral tambien, donde los resultados muestran los beneficios de la aproximacion en la deteccion de una gran variedad de objetos cuyas firmas espectrales tienen suficiente desviacion respecto del fondo. La tecnica resulta ser automatica en el sentido de que no hay necesidad de ajuste de parametros, dando resultados significativos en todos los casos. Incluso los objetos de tamano subpixel, que no pueden distinguirse a simple vista por el ojo humano en la imagen original, pueden ser detectados como anomalias. Ademas, se realiza una comparacion entre el enfoque propuesto, la popular tecnica RX y otros detectores tanto en su modalidad global como local. El metodo propuesto supera a los demas en determinados escenarios, demostrando su capacidad para reducir la proporcion de falsas alarmas. Los resultados del algoritmo automatico DAFT desarrollado, han demostrado la mejora en la definicion cualitativa de las anomalias espectrales que identifican a entidades diferentes en o bajo superficie, reemplazando para ello el modelo clasico de distribucion normal con un metodo robusto que contempla distintas alternativas desde el momento mismo de la adquisicion del dato hiperespectral. Para su consecucion ha sido necesario analizar la relacion entre parametros biofisicos, como la reflectancia y la emisividad de los materiales, y la distribucion espacial de entidades detectadas respecto de su entorno. Por ultimo, el algoritmo DAFT ha sido elegido como el mas adecuado para sensores que adquieren datos en el TIR, ya que presenta el mejor acuerdo con los datos de referencia, demostrando una gran eficacia computacional que facilita su implementacion en un sistema de cartografia que proyecte de forma automatica en un marco geografico de referencia las anomalias detectadas, lo que confirma un significativo avance hacia un sistema en lo que se denomina cartografia en tiempo real. The aim of this Thesis is to develop a specific methodology in order to be applied in automatic detection anomalies processes using hyperspectral data also called hyperspectral scenes, and to improve the classification processes. Several scenarios, areas and their relationship with surfaces and objects have been tested. The spectral characteristics of reflectance parameter and emissivity in the pattern recognition of urban materials in several hyperspectral scenes have also been tested. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) and MASTER (MODIS/ASTER Simulator) have been used in this research. It is assumed that there is not prior knowledge of the targets in anomaly detection. Thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by the image segmentation. Several experiments on different scenarios have been designed, analyzing the behavior of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. Results and their consequences in unsupervised classification processes are discussed. Detection of spectral anomalies aims at extracting automatically pixels that show significant responses in relation of their surroundings. This Thesis deals with the unsupervised technique of target detection, also called anomaly detection. Since this technique assumes no prior knowledge about the target or the statistical characteristics of the data, the only available option is to look for objects that are differentiated from the background. Several methods have been developed in the last decades, allowing a better understanding of the relationships between the image dimensionality and the optimization of search procedures as well as the subpixel differentiation of the spectral mixture and its implications in anomalous responses. In other sense, image spectrometry has proven to be efficient in the characterization of materials, based on statistical methods using a specific reflection and absorption bands. Spectral configurations in the VNIR, SWIR and TIR have been successfully used for mapping materials in different urban scenarios. There has been an increasing interest in the use of high resolution data (both spatial and spectral) to detect small objects and to discriminate surfaces in areas with urban complexity. This has come to be known as target detection which can be either supervised or unsupervised. In supervised target detection, algorithms lean on prior knowledge, such as the spectral signature. The detection process for matching signatures is not straightforward due to the complications of converting data airborne sensor with material spectra in the ground. This could be further complicated by the large number of possible objects of interest, as well as uncertainty as to the reflectance or emissivity of these objects and surfaces. An important objective in this research is to establish relationships that allow linking spectral anomalies with what can be called informational anomalies and, therefore, identify information related to anomalous responses in some places rather than simply spotting differences from the background. The development in recent years of new hyperspectral sensors and techniques, widen the possibilities for applications in remote sensing of the Earth. Remote sensing systems measure and record electromagnetic disturbances that the surveyed objects induce in their surroundings, by means of different sensors mounted on airborne or space platforms. Map updating is important for management and decisions making people, because of the fast changes that usually happen in natural, urban and semi urban areas. It is necessary to optimize the methodology for obtaining the best from remote sensing techniques from hyperspectral data. The first problem with hyperspectral data is to reduce the dimensionality, keeping the maximum amount of information. Hyperspectral sensors augment considerably the amount of information, this allows us to obtain a better precision on the separation of material but at the same time it is necessary to calculate a bigger number of parameters, and the precision lowers with the increase in the number of bands. This is known as the Hughes effects (Bellman, 1957) . Hyperspectral imagery allows us to discriminate between a huge number of different materials however some land and urban covers are made up with similar material and respond similarly which produces confusion in the classification. The training and the algorithm used for mapping are also important for the final result and some properties of thermal spectrum for detecting land cover will be studied. In summary, this Thesis presents a new technique for anomaly detection in hyperspectral data called DAFT, as a PP's variant, based on dimensionality reduction by projecting anomalies or targets with unknown spectral signature to the background, in a range thermal spectrum wavelengths. The proposed methodology has been tested with hyperspectral images from different imaging spectrometers corresponding to several places or scenarios, therefore with different spectral background. The results show the benefits of the approach to the detection of a variety of targets whose spectral signatures have sufficient deviation in relation to the background. DAFT is an automated technique in the sense that there is not necessary to adjust parameters, providing significant results in all cases. Subpixel anomalies which cannot be distinguished by the human eye, on the original image, however can be detected as outliers due to the projection of the VNIR end members with a very strong thermal contrast. Furthermore, a comparison between the proposed approach and the well-known RX detector is performed at both modes, global and local. The proposed method outperforms the existents in particular scenarios, demonstrating its performance to reduce the probability of false alarms. The results of the automatic algorithm DAFT have demonstrated improvement in the qualitative definition of the spectral anomalies by replacing the classical model by the normal distribution with a robust method. For their achievement has been necessary to analyze the relationship between biophysical parameters such as reflectance and emissivity, and the spatial distribution of detected entities with respect to their environment, as for example some buried or semi-buried materials, or building covers of asbestos, cellular polycarbonate-PVC or metal composites. Finally, the DAFT method has been chosen as the most suitable for anomaly detection using imaging spectrometers that acquire them in the thermal infrared spectrum, since it presents the best results in comparison with the reference data, demonstrating great computational efficiency that facilitates its implementation in a mapping system towards, what is called, Real-Time Mapping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La teledetección o percepción remota (remote sensing) es la ciencia que abarca la obtención de información (espectral, espacial, temporal) sobre un objeto, área o fenómeno a través del análisis de datos adquiridos por un dispositivo que no está en contacto con el elemento estudiado. Los datos obtenidos a partir de la teledetección para la observación de la superficie terrestre comúnmente son imágenes, que se caracterizan por contar con un sinnúmero de aplicaciones que están en continua evolución, por lo cual para solventar los constantes requerimientos de nuevas aplicaciones a menudo se proponen nuevos algoritmos que mejoran o facilitan algún proceso en particular. Para el desarrollo de dichos algoritmos, es preciso hacer uso de métodos matemáticos que permitan la manipulación de la información con algún fin específico. Dentro de estos métodos, el análisis multi-resolución se caracteriza por permitir analizar una señal en diferentes escalas, lo que facilita trabajar con datos que puedan tener resoluciones diferentes, tal es el caso de las imágenes obtenidas mediante teledetección. Una de las alternativas para la implementación de análisis multi-resolución es la Transformada Wavelet Compleja de Doble Árbol (DT-CWT). Esta transformada se implementa a partir de dos filtros reales y se caracteriza por presentar invariancia a traslaciones, precio a pagar por su característica de no ser críticamente muestreada. A partir de las características de la DT-CWT se propone su uso en el diseño de algoritmos de procesamiento de imagen, particularmente imágenes de teledetección. Estos nuevos algoritmos de procesamiento digital de imágenes de teledetección corresponden particularmente a fusión y detección de cambios. En este contexto esta tesis presenta tres algoritmos principales aplicados a fusión, evaluación de fusión y detección de cambios en imágenes. Para el caso de fusión de imágenes, se presenta un esquema general que puede ser utilizado con cualquier algoritmo de análisis multi-resolución; este algoritmo parte de la implementación mediante DT-CWT para luego extenderlo a un método alternativo, el filtro bilateral. En cualquiera de los dos casos la metodología implica que la inyección de componentes pueda realizarse mediante diferentes alternativas. En el caso del algoritmo de evaluación de fusión se presenta un nuevo esquema que hace uso de procesos de clasificación, lo que permite evaluar los resultados del proceso de fusión de forma individual para cada tipo de cobertura de uso de suelo que se defina en el proceso de evaluación. Esta metodología permite complementar los procesos de evaluación tradicionales y puede facilitar el análisis del impacto de la fusión sobre determinadas clases de suelo. Finalmente, los algoritmos de detección de cambios propuestos abarcan dos enfoques. El primero está orientado a la obtención de mapas de sequía en datos multi-temporales a partir de índices espectrales. El segundo enfoque propone la utilización de un índice global de calidad espectral como filtro espacial. La utilización de dicho filtro facilita la comparación espectral global entre dos imágenes, esto unido a la utilización de umbrales, conlleva a la obtención de imágenes diferencia que contienen la información de cambio. ABSTRACT Remote sensing is a science relates to information gathering (spectral, spatial, temporal) about an object, area or phenomenon, through the analysis of data acquired by a device that is not in contact with the studied item. In general, data obtained from remote sensing to observe the earth’s surface are images, which are characterized by having a number of applications that are constantly evolving. Therefore, to solve the constant requirements of applications, new algorithms are proposed to improve or facilitate a particular process. With the purpose of developing these algorithms, each application needs mathematical methods, such as the multiresolution analysis which allows to analyze a signal at different scales. One of the options is the Dual Tree Complex Wavelet Transform (DT-CWT) which is implemented from two real filters and is characterized by invariance to translations. Among the advantages of this transform is its successful application in image fusion and change detection areas. In this regard, this thesis presents three algorithms applied to image fusion, assessment for image fusion and change detection in multitemporal images. For image fusion, it is presented a general outline that can be used with any multiresolution analysis technique; this algorithm is proposed at first with DT-CWT and then extends to an alternative method, the bilateral filter. In either case the method involves injection of components by various means. For fusion assessment, the proposal is focused on a scheme that uses classification processes, which allows evaluating merger results individually for each type of land use coverage that is defined in evaluation process. This methodology allows complementing traditional assessment processes and can facilitate impact analysis of the merger on certain kinds of soil. Finally, two approaches of change detection algorithms are included. The first is aimed at obtaining drought maps in multitemporal data from spectral indices. The second one takes a global index of spectral quality as a spatial filter. The use of this filter facilitates global spectral comparison between two images and by means of thresholding, allows imaging containing change information.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new method for detecting microcalcifications in regions of interest (ROIs) extracted from digitized mammograms is proposed. The top-hat transform is a technique based on mathematical morphology operations and, in this paper, is used to perform contrast enhancement of the mi-crocalcifications. To improve microcalcification detection, a novel image sub-segmentation approach based on the possibilistic fuzzy c-means algorithm is used. From the original ROIs, window-based features, such as the mean and standard deviation, were extracted; these features were used as an input vector in a classifier. The classifier is based on an artificial neural network to identify patterns belonging to microcalcifications and healthy tissue. Our results show that the proposed method is a good alternative for automatically detecting microcalcifications, because this stage is an important part of early breast cancer detection

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth?s resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Uno de los defectos más frecuentes en los generadores síncronos son los defectos a tierra tanto en el devanado estatórico, como de excitación. Se produce un defecto cuando el aislamiento eléctrico entre las partes activas de cualquiera de estos devanados y tierra se reduce considerablemente o desaparece. La detección de los defectos a tierra en ambos devanados es un tema ampliamente estudiado a nivel industrial. Tras la detección y confirmación de la existencia del defecto, dicha falta debe ser localizada a lo largo del devanado para su reparación, para lo que habitualmente el rotor debe ser extraído del estator. Esta operación resulta especialmente compleja y cara. Además, el hecho de limitar la corriente de defecto en ambos devanados provoca que el defecto no sea localizable visualmente, pues apenas existe daño en el generador. Por ello, se deben aplicar técnicas muy laboriosas para localizar exactamente el defecto y poder así reparar el devanado. De cara a reducir el tiempo de reparación, y con ello el tiempo en que el generador esta fuera de servicio, cualquier información por parte del relé de protección acerca de la localización del defecto resultaría de gran utilidad. El principal objetivo de esta tesis doctoral ha sido el desarrollo de nuevos algoritmos que permitan la estimación de la localización de los defectos a tierra tanto en el devanado rotórico como estatórico de máquinas síncronas. Respecto al devanado de excitación, se ha presentado un nuevo método de localización de defectos a tierra para generadores con excitación estática. Este método permite incluso distinguir si el defecto se ha producido en el devanado de excitación, o en cualquiera de los componentes del sistema de excitación, esto es, transformador de excitación, conductores de alimentación del rectificador controlado, etc. En caso de defecto a tierra en del devanado rotórico, este método proporciona una estimación de su localización. Sin embargo, para poder obtener la localización del defecto, se precisa conocer el valor de resistencia de defecto. Por ello, en este trabajo se presenta además un nuevo método para la estimación de este parámetro de forma precisa. Finalmente, se presenta un nuevo método de detección de defectos a tierra, basado en el criterio direccional, que complementa el método de localización, permitiendo tener en cuenta la influencia de las capacidades a tierra del sistema. Estas capacidades resultan determinantes a la hora de localizar el defecto de forma adecuada. En relación con el devanado estatórico, en esta tesis doctoral se presenta un nuevo algoritmo de localización de defectos a tierra para generadores que dispongan de la protección de faltas a tierra basada en la inyección de baja frecuencia. Se ha propuesto un método general, que tiene en cuenta todos los parámetros del sistema, así como una versión simplificada del método para generadores con capacidades a tierra muy reducida, que podría resultar de fácil implementación en relés de protección comercial. Los algoritmos y métodos presentados se han validado mediante ensayos experimentales en un generador de laboratorio de 5 kVA, así como en un generador comercial de 106 MVA con resultados satisfactorios y prometedores. ABSTRACT One of the most common faults in synchronous generators is the ground fault in both the stator winding and the excitation winding. In case of fault, the insulation level between the active part of any of these windings and ground lowers considerably, or even disappears. The detection of ground faults in both windings is a very researched topic. The fault current is typically limited intentionally to a reduced level. This allows to detect easily the ground faults, and therefore to avoid damage in the generator. After the detection and confirmation of the existence of a ground fault, it should be located along the winding in order to repair of the machine. Then, the rotor has to be extracted, which is a very complex and expensive operation. Moreover, the fact of limiting the fault current makes that the insulation failure is not visually detectable, because there is no visible damage in the generator. Therefore, some laborious techniques have to apply to locate accurately the fault. In order to reduce the repair time, and therefore the time that the generator is out of service, any information about the approximate location of the fault would be very useful. The main objective of this doctoral thesis has been the development of new algorithms and methods to estimate the location of ground faults in the stator and in the rotor winding of synchronous generators. Regarding the excitation winding, a new location method of ground faults in excitation winding of synchronous machines with static excitation has been presented. This method allows even to detect if the fault is at the excitation winding, or in any other component of the excitation system: controlled rectifier, excitation transformer, etc. In case of ground fault in the rotor winding, this method provides an estimation of the fault location. However, in order to calculate the location, the value of fault resistance is necessary. Therefore, a new fault-resistance estimation algorithm is presented in this text. Finally, a new fault detection algorithm based on directional criterion is described to complement the fault location method. This algorithm takes into account the influence of the capacitance-to-ground of the system, which has a remarkable impact in the accuracy of the fault location. Regarding the stator winding, a new fault-location algorithm has been presented for stator winding of synchronous generators. This algorithm is applicable to generators with ground-fault protection based in low-frequency injection. A general algorithm, which takes every parameter of the system into account, has been presented. Moreover, a simplified version of the algorithm has been proposed for generators with especially low value of capacitance to ground. This simplified algorithm might be easily implementable in protective relays. The proposed methods and algorithms have been tested in a 5 kVA laboratory generator, as well as in a 106 MVA synchronous generator with satisfactory and promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Analysis of exhaled volatile organic compounds (VOCs) in breath is an emerging approach for cancer diagnosis, but little is known about its potential use as a biomarker for colorectal cancer (CRC). We investigated whether a combination of VOCs could distinct CRC patients from healthy volunteers. Methods: In a pilot study, we prospectively analyzed breath exhalations of 38 CRC patient and 43 healthy controls all scheduled for colonoscopy, older than 50 in the average-risk category. The samples were ionized and analyzed using a Secondary ElectroSpray Ionization (SESI) coupled with a Time-of-Flight Mass Spectrometer (SESI-MS). After a minimum of 2 hours fasting, volunteers deeply exhaled into the system. Each test requires three soft exhalations and takes less than ten minutes. No breath condensate or collection are required and VOCs masses are detected in real time, also allowing for a spirometric profile to be analyzed along with the VOCs. A new sampling system precludes ambient air from entering the system, so background contamination is reduced by an overall factor of ten. Potential confounding variables from the patient or the environment that could interfere with results were analyzed. Results: 255 VOCs, with masses ranging from 30 to 431 Dalton have been identified in the exhaled breath. Using a classification technique based on the ROC curve for each VOC, a set of 9 biomarkers discriminating the presence of CRC from healthy volunteers was obtained, showing an average recognition rate of 81.94%, a sensitivity of 87.04% and specificity of 76.85%. Conclusions: A combination of cualitative and cuantitative analysis of VOCs in the exhaled breath could be a powerful diagnostic tool for average-risk CRC population. These results should be taken with precaution, as many endogenous or exogenous contaminants could interfere as confounding variables. On-line analysis with SESI-MS is less time-consuming and doesn’t need sample preparation. We are recruiting in a new pilot study including breath cleaning procedures and spirometric analysis incorporated into the postprocessing algorithms, to better control for confounding variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless sensor networks is an important problem since these kinds of networks manage critical applications and data. The specific constraints of WSN make the problem even more critical, and effective solutions have not yet been implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false positives using collaboration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En muchas áreas de la ingeniería, la integridad y confiabilidad de las estructuras son aspectos de extrema importancia. Estos son controlados mediante el adecuado conocimiento de danos existentes. Típicamente, alcanzar el nivel de conocimiento necesario que permita caracterizar la integridad estructural implica el uso de técnicas de ensayos no destructivos. Estas técnicas son a menudo costosas y consumen mucho tiempo. En la actualidad, muchas industrias buscan incrementar la confiabilidad de las estructuras que emplean. Mediante el uso de técnicas de última tecnología es posible monitorizar las estructuras y en algunos casos, es factible detectar daños incipientes que pueden desencadenar en fallos catastróficos. Desafortunadamente, a medida que la complejidad de las estructuras, los componentes y sistemas incrementa, el riesgo de la aparición de daños y fallas también incrementa. Al mismo tiempo, la detección de dichas fallas y defectos se torna más compleja. En años recientes, la industria aeroespacial ha realizado grandes esfuerzos para integrar los sensores dentro de las estructuras, además de desarrollar algoritmos que permitan determinar la integridad estructural en tiempo real. Esta filosofía ha sido llamada “Structural Health Monitoring” (o “Monitorización de Salud Estructural” en español) y este tipo de estructuras han recibido el nombre de “Smart Structures” (o “Estructuras Inteligentes” en español). Este nuevo tipo de estructuras integran materiales, sensores, actuadores y algoritmos para detectar, cuantificar y localizar daños dentro de ellas mismas. Una novedosa metodología para detección de daños en estructuras se propone en este trabajo. La metodología está basada en mediciones de deformación y consiste en desarrollar técnicas de reconocimiento de patrones en el campo de deformaciones. Estas últimas, basadas en PCA (Análisis de Componentes Principales) y otras técnicas de reducción dimensional. Se propone el uso de Redes de difracción de Bragg y medidas distribuidas como sensores de deformación. La metodología se validó mediante pruebas a escala de laboratorio y pruebas a escala real con estructuras complejas. Los efectos de las condiciones de carga variables fueron estudiados y diversos experimentos fueron realizados para condiciones de carga estáticas y dinámicas, demostrando que la metodología es robusta ante condiciones de carga desconocidas. ABSTRACT In many engineering fields, the integrity and reliability of the structures are extremely important aspects. They are controlled by the adequate knowledge of existing damages. Typically, achieving the level of knowledge necessary to characterize the structural integrity involves the usage of nondestructive testing techniques. These are often expensive and time consuming. Nowadays, many industries look to increase the reliability of the structures used. By using leading edge techniques it is possible to monitoring these structures and in some cases, detect incipient damage that could trigger catastrophic failures. Unfortunately, as the complexity of the structures, components and systems increases, the risk of damages and failures also increases. At the same time, the detection of such failures and defects becomes more difficult. In recent years, the aerospace industry has done great efforts to integrate the sensors within the structures and, to develop algorithms for determining the structural integrity in real time. The ‘philosophy’ has being called “Structural Health Monitoring” and these structures have been called “smart structures”. These new types of structures integrate materials, sensors, actuators and algorithms to detect, quantify and locate damage within itself. A novel methodology for damage detection in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (Principal Component Analysis) and other dimensional reduction techniques. The use of fiber Bragg gratings and distributed sensing as strain sensors is proposed. The methodology have been validated by using laboratory scale tests and real scale tests with complex structures. The effects of the variable load conditions were studied and several experiments were performed for static and dynamic load conditions, demonstrating that the methodology is robust under unknown load conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the experimental set up of a system composed by a set of wearable sensors devices for the recording of the motion signals and software algorithms for the signal analysis. This system is able to automatically detect and assess the severity of bradykinesia, tremor, dyskinesia and akinesia motor symptoms. Based on the assessment of the akinesia, the ON-OFF status of the patient is determined for each moment. The assessment performed through the automatic evaluation of the akinesia is compared with the status reported by the patients in their diaries. Preliminary results with a total recording period of 32 hours with two PD patients are presented, where a good correspondence (88.2 +/- 3.7 %) was observed. Best (93.7 por ciento) and worst (87 por ciento) correlation results are illustrated, together with the analysis of the automatic assessment of the akinesia symptom leading to the status determination. The results obtained are promising, and if confirmed with further data, this automatic assessment of PD motor symptoms will lead to a better adjustment of medication dosages and timing, cost savings and an improved quality of life of the patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Project you are about to see it is based on the technologies used on object detection and recognition, especially on leaves and chromosomes. To do so, this document contains the typical parts of a scientific paper, as it is what it is. It is composed by an Abstract, an Introduction, points that have to do with the investigation area, future work, conclusions and references used for the elaboration of the document. The Abstract talks about what are we going to find in this paper, which is technologies employed on pattern detection and recognition for leaves and chromosomes and the jobs that are already made for cataloguing these objects. In the introduction detection and recognition meanings are explained. This is necessary as many papers get confused with these terms, specially the ones talking about chromosomes. Detecting an object is gathering the parts of the image that are useful and eliminating the useless parts. Summarizing, detection would be recognizing the objects borders. When talking about recognition, we are talking about the computers or the machines process, which says what kind of object we are handling. Afterwards we face a compilation of the most used technologies in object detection in general. There are two main groups on this category: Based on derivatives of images and based on ASIFT points. The ones that are based on derivatives of images have in common that convolving them with a previously created matrix does the treatment of them. This is done for detecting borders on the images, which are changes on the intensity of the pixels. Within these technologies we face two groups: Gradian based, which search for maximums and minimums on the pixels intensity as they only use the first derivative. The Laplacian based methods search for zeros on the pixels intensity as they use the second derivative. Depending on the level of details that we want to use on the final result, we will choose one option or the other, because, as its logic, if we used Gradian based methods, the computer will consume less resources and less time as there are less operations, but the quality will be worse. On the other hand, if we use the Laplacian based methods we will need more time and resources as they require more operations, but we will have a much better quality result. After explaining all the derivative based methods, we take a look on the different algorithms that are available for both groups. The other big group of technologies for object recognition is the one based on ASIFT points, which are based on 6 image parameters and compare them with another image taking under consideration these parameters. These methods disadvantage, for our future purposes, is that it is only valid for one single object. So if we are going to recognize two different leaves, even though if they refer to the same specie, we are not going to be able to recognize them with this method. It is important to mention these types of technologies as we are talking about recognition methods in general. At the end of the chapter we can see a comparison with pros and cons of all technologies that are employed. Firstly comparing them separately and then comparing them all together, based on our purposes. Recognition techniques, which are the next chapter, are not really vast as, even though there are general steps for doing object recognition, every single object that has to be recognized has its own method as the are different. This is why there is not a general method that we can specify on this chapter. We now move on into leaf detection techniques on computers. Now we will use the technique explained above based on the image derivatives. Next step will be to turn the leaf into several parameters. Depending on the document that you are referring to, there will be more or less parameters. Some papers recommend to divide the leaf into 3 main features (shape, dent and vein] and doing mathematical operations with them we can get up to 16 secondary features. Next proposition is dividing the leaf into 5 main features (Diameter, physiological length, physiological width, area and perimeter] and from those, extract 12 secondary features. This second alternative is the most used so it is the one that is going to be the reference. Following in to leaf recognition, we are based on a paper that provides a source code that, clicking on both leaf ends, it automatically tells to which specie belongs the leaf that we are trying to recognize. To do so, it only requires having a database. On the tests that have been made by the document, they assure us a 90.312% of accuracy over 320 total tests (32 plants on the database and 10 tests per specie]. Next chapter talks about chromosome detection, where we shall pass the metaphasis plate, where the chromosomes are disorganized, into the karyotype plate, which is the usual view of the 23 chromosomes ordered by number. There are two types of techniques to do this step: the skeletonization process and swiping angles. Skeletonization progress consists on suppressing the inside pixels of the chromosome to just stay with the silhouette. This method is really similar to the ones based on the derivatives of the image but the difference is that it doesnt detect the borders but the interior of the chromosome. Second technique consists of swiping angles from the beginning of the chromosome and, taking under consideration, that on a single chromosome we cannot have more than an X angle, it detects the various regions of the chromosomes. Once the karyotype plate is defined, we continue with chromosome recognition. To do so, there is a technique based on the banding that chromosomes have (grey scale bands] that make them unique. The program then detects the longitudinal axis of the chromosome and reconstructs the band profiles. Then the computer is able to recognize this chromosome. Concerning the future work, we generally have to independent techniques that dont reunite detection and recognition, so our main focus would be to prepare a program that gathers both techniques. On the leaf matter we have seen that, detection and recognition, have a link as both share the option of dividing the leaf into 5 main features. The work that would have to be done is to create an algorithm that linked both methods, as in the program, which recognizes leaves, it has to be clicked both leaf ends so it is not an automatic algorithm. On the chromosome side, we should create an algorithm that searches for the beginning of the chromosome and then start to swipe angles, to later give the parameters to the program that searches for the band profiles. Finally, on the summary, we explain why this type of investigation is needed, and that is because with global warming, lots of species (animals and plants] are beginning to extinguish. That is the reason why a big database, which gathers all the possible species, is needed. For recognizing animal species, we just only have to have the 23 chromosomes. While recognizing a plant, there are several ways of doing it, but the easiest way to input a computer is to scan the leaf of the plant. RESUMEN. El proyecto que se puede ver a continuación trata sobre las tecnologías empleadas en la detección y reconocimiento de objetos, especialmente de hojas y cromosomas. Para ello, este documento contiene las partes típicas de un paper de investigación, puesto que es de lo que se trata. Así, estará compuesto de Abstract, Introducción, diversos puntos que tengan que ver con el área a investigar, trabajo futuro, conclusiones y biografía utilizada para la realización del documento. Así, el Abstract nos cuenta qué vamos a poder encontrar en este paper, que no es ni más ni menos que las tecnologías empleadas en el reconocimiento y detección de patrones en hojas y cromosomas y qué trabajos hay existentes para catalogar a estos objetos. En la introducción se explican los conceptos de qué es la detección y qué es el reconocimiento. Esto es necesario ya que muchos papers científicos, especialmente los que hablan de cromosomas, confunden estos dos términos que no podían ser más sencillos. Por un lado tendríamos la detección del objeto, que sería simplemente coger las partes que nos interesasen de la imagen y eliminar aquellas partes que no nos fueran útiles para un futuro. Resumiendo, sería reconocer los bordes del objeto de estudio. Cuando hablamos de reconocimiento, estamos refiriéndonos al proceso que tiene el ordenador, o la máquina, para decir qué clase de objeto estamos tratando. Seguidamente nos encontramos con un recopilatorio de las tecnologías más utilizadas para la detección de objetos, en general. Aquí nos encontraríamos con dos grandes grupos de tecnologías: Las basadas en las derivadas de imágenes y las basadas en los puntos ASIFT. El grupo de tecnologías basadas en derivadas de imágenes tienen en común que hay que tratar a las imágenes mediante una convolución con una matriz creada previamente. Esto se hace para detectar bordes en las imágenes que son básicamente cambios en la intensidad de los píxeles. Dentro de estas tecnologías nos encontramos con dos grupos: Los basados en gradientes, los cuales buscan máximos y mínimos de intensidad en la imagen puesto que sólo utilizan la primera derivada; y los Laplacianos, los cuales buscan ceros en la intensidad de los píxeles puesto que estos utilizan la segunda derivada de la imagen. Dependiendo del nivel de detalles que queramos utilizar en el resultado final nos decantaremos por un método u otro puesto que, como es lógico, si utilizamos los basados en el gradiente habrá menos operaciones por lo que consumirá más tiempo y recursos pero por la contra tendremos menos calidad de imagen. Y al revés pasa con los Laplacianos, puesto que necesitan más operaciones y recursos pero tendrán un resultado final con mejor calidad. Después de explicar los tipos de operadores que hay, se hace un recorrido explicando los distintos tipos de algoritmos que hay en cada uno de los grupos. El otro gran grupo de tecnologías para el reconocimiento de objetos son los basados en puntos ASIFT, los cuales se basan en 6 parámetros de la imagen y la comparan con otra imagen teniendo en cuenta dichos parámetros. La desventaja de este método, para nuestros propósitos futuros, es que sólo es valido para un objeto en concreto. Por lo que si vamos a reconocer dos hojas diferentes, aunque sean de la misma especie, no vamos a poder reconocerlas mediante este método. Aún así es importante explicar este tipo de tecnologías puesto que estamos hablando de técnicas de reconocimiento en general. Al final del capítulo podremos ver una comparación con los pros y las contras de todas las tecnologías empleadas. Primeramente comparándolas de forma separada y, finalmente, compararemos todos los métodos existentes en base a nuestros propósitos. Las técnicas de reconocimiento, el siguiente apartado, no es muy extenso puesto que, aunque haya pasos generales para el reconocimiento de objetos, cada objeto a reconocer es distinto por lo que no hay un método específico que se pueda generalizar. Pasamos ahora a las técnicas de detección de hojas mediante ordenador. Aquí usaremos la técnica explicada previamente explicada basada en las derivadas de las imágenes. La continuación de este paso sería diseccionar la hoja en diversos parámetros. Dependiendo de la fuente a la que se consulte pueden haber más o menos parámetros. Unos documentos aconsejan dividir la morfología de la hoja en 3 parámetros principales (Forma, Dentina y ramificación] y derivando de dichos parámetros convertirlos a 16 parámetros secundarios. La otra propuesta es dividir la morfología de la hoja en 5 parámetros principales (Diámetro, longitud fisiológica, anchura fisiológica, área y perímetro] y de ahí extraer 12 parámetros secundarios. Esta segunda propuesta es la más utilizada de todas por lo que es la que se utilizará. Pasamos al reconocimiento de hojas, en la cual nos hemos basado en un documento que provee un código fuente que cucando en los dos extremos de la hoja automáticamente nos dice a qué especie pertenece la hoja que estamos intentando reconocer. Para ello sólo hay que formar una base de datos. En los test realizados por el citado documento, nos aseguran que tiene un índice de acierto del 90.312% en 320 test en total (32 plantas insertadas en la base de datos por 10 test que se han realizado por cada una de las especies]. El siguiente apartado trata de la detección de cromosomas, en el cual se debe de pasar de la célula metafásica, donde los cromosomas están desorganizados, al cariotipo, que es como solemos ver los 23 cromosomas de forma ordenada. Hay dos tipos de técnicas para realizar este paso: Por el proceso de esquelotonización y barriendo ángulos. El proceso de esqueletonización consiste en eliminar los píxeles del interior del cromosoma para quedarse con su silueta; Este proceso es similar a los métodos de derivación de los píxeles pero se diferencia en que no detecta bordes si no que detecta el interior de los cromosomas. La segunda técnica consiste en ir barriendo ángulos desde el principio del cromosoma y teniendo en cuenta que un cromosoma no puede doblarse más de X grados detecta las diversas regiones de los cromosomas. Una vez tengamos el cariotipo, se continua con el reconocimiento de cromosomas. Para ello existe una técnica basada en las bandas de blancos y negros que tienen los cromosomas y que son las que los hacen únicos. Para ello el programa detecta los ejes longitudinales del cromosoma y reconstruye los perfiles de las bandas que posee el cromosoma y que lo identifican como único. En cuanto al trabajo que se podría desempeñar en el futuro, tenemos por lo general dos técnicas independientes que no unen la detección con el reconocimiento por lo que se habría de preparar un programa que uniese estas dos técnicas. Respecto a las hojas hemos visto que ambos métodos, detección y reconocimiento, están vinculados debido a que ambos comparten la opinión de dividir las hojas en 5 parámetros principales. El trabajo que habría que realizar sería el de crear un algoritmo que conectase a ambos ya que en el programa de reconocimiento se debe clicar a los dos extremos de la hoja por lo que no es una tarea automática. En cuanto a los cromosomas, se debería de crear un algoritmo que busque el inicio del cromosoma y entonces empiece a barrer ángulos para después poder dárselo al programa que busca los perfiles de bandas de los cromosomas. Finalmente, en el resumen se explica el por qué hace falta este tipo de investigación, esto es que con el calentamiento global, muchas de las especies (tanto animales como plantas] se están empezando a extinguir. Es por ello que se necesitará una base de datos que contemple todas las posibles especies tanto del reino animal como del reino vegetal. Para reconocer a una especie animal, simplemente bastará con tener sus 23 cromosomas; mientras que para reconocer a una especie vegetal, existen diversas formas. Aunque la más sencilla de todas es contar con la hoja de la especie puesto que es el elemento más fácil de escanear e introducir en el ordenador.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant diseases represent a major economic and environmental problem in agriculture and forestry. Upon infection, a plant develops symptoms that affect different parts of the plant causing a significant agronomic impact. As many such diseases spread in time over the whole crop, a system for early disease detection can aid to mitigate the losses produced by the plant diseases and can further prevent their spread [1]. In recent years, several mathematical algorithms of search have been proposed [2,3] that could be used as a non-invasive, fast, reliable and cost-effective methods to localize in space infectious focus by detecting changes in the profile of volatile organic compounds. Tracking scents and locating odor sources is a major challenge in robotics, on one hand because odour plumes consists of non-uniform intermittent odour patches dispersed by the wind and on the other hand because of the lack of precise and reliable odour sensors. Notwithstanding, we have develop a simple robotic platform to study the robustness and effectiveness of different search algorithms [4], with respect to specific problems to be found in their further application in agriculture, namely errors committed in the motion and sensing and to the existence of spatial constraints due to land topology or the presence of obstacles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientific workflows provide the means to define, execute and reproduce computational experiments. However, reusing existing workflows still poses challenges for workflow designers. Workflows are often too large and too specific to reuse in their entirety, so reuse is more likely to happen for fragments of workflows. These fragments may be identified manually by users as sub-workflows, or detected automatically. In this paper we present the FragFlow approach, which detects workflow fragments automatically by analyzing existing workflow corpora with graph mining algorithms. FragFlow detects the most common workflow fragments, links them to the original workflows and visualizes them. We evaluate our approach by comparing FragFlow results against user-defined sub-workflows from three different corpora of the LONI Pipeline system. Based on this evaluation, we discuss how automated workflow fragment detection could facilitate workflow reuse.