18 resultados para Design Studio Model
em Universidad Politécnica de Madrid
Resumo:
This article presents the design, kinematic model and communication architecture for the multi-agent robotic system called SMART. The philosophy behind this kind of system requires the communication architecture to contemplate the concurrence of the whole system. The proposed architecture combines different communication technologies (TCP/IP and Bluetooth) under one protocol designed for the cooperation among agents and other elements of the system such as IP-Cameras, image processing library, path planner, user Interface, control block and data block. The high level control is modeled by Work-Flow Petri nets and implemented in C++ and C♯♯. Experimental results show the performance of the designed architecture.
Resumo:
This proposed project aims to design a Model of Public Policy for R&D &I to lead, coordinate and direct the Regional Innovation System (RIS) in support of the SMI sector. The case study of the Bolivar State, Venezuela, is analyzed. The project represents a no- experimental research of projective type and is divided into two parts. In the first one, the current state of the SRI and its relationship with the SMIs is diagnosed, evaluated and described. In the second part, a model of public policy for R&D&I is designed and proposed in order to strengthen the capacity for innovation in SMIs.
Resumo:
La Responsabilidad Social Corporativa (RSC) sigue constituyendo en la actualidad un área de estudio de elevado interés tanto para la comunidad académica como para los negocios en general. A pesar del gran número de investigaciones realizadas en las pasadas décadas sobre los distintos aspectos que la caracterizan, y la definición generalizada de políticas relacionadas en las compañías más importantes, existen todavía algunos asuntos clave sobre los que se plantean interrogantes fundamentales. La complejidad asociada al constructo RSC y su carácter intrínsecamente dinámico explican en parte esta afirmación. En su aplicación práctica, las dudas sobre la RSC se enfocan hoy en día hacia su implantación con carácter permanente en el día a día de las organizaciones, la relevancia estratégica de las principales iniciativas, o la posibilidad de obtención de beneficios a medio y largo plazo. Se observa de esta forma la traslación de los debates principales hacia las consecuencias más estratégicas de dichas políticas, influenciados por prestigiosos estudios académicos en los que se caracteriza la denominada RSC Estratégica (RSCE), y por las principales organizaciones de certificación de memorias anuales de RSC y sostenibilidad. En este contexto se sitúa el objeto principal de esta investigación, consistente en el diseño de un modelo de implantación de RSCE que permita no sólo identificar los factores más importantes a tener en consideración para su éxito, sino para caracterizar las potenciales formas de creación de valor que pueden surgir de la aplicación del mismo. Se argumenta la elección del tema por considerarse que los asuntos asociados a la RSC no están lo suficientemente explorados desde la visión estratégica más actual, y por constituir la creación de valor el objetivo más crítico dentro de los procesos directivos de planificación estratégica. De esta forma, se utilizan dos metodologías para destacar qué factores son esenciales en la implantación de la RSCE, con qué fines las compañías aplican esas políticas, y qué resultados obtienen como consecuencia: análisis comparativo de casos de estudio y análisis estadístico cuantitativo. Los casos de estudio analizan en profundidad políticas globales de RSCE bajo diferentes puntos de vista, para derivar conclusiones sobre los factores que facilitan u obstaculizan su implantación permanente en las organizaciones. Su desarrollo se estructura en torno a un marco conceptual de referencia obtenido a través de la revisión bibliográfica específica, y se complementa con la información primaria y secundaria de investigación. Por su parte, el análisis cuantitativo se desarrolla mediante tres técnicas exploratorias: estadística descriptiva, regresión múltiple y análisis de componentes principales. Su aplicación combinada va a posibilitar el contraste de aspectos destacados en los análisis de casos, así como la configuración final del modelo de implantación, y la expresión numérica de la creación de valor a través de la RSCE en función de las dimensiones estratégicas consideradas. En consecuencia, los resultados de la tesis se estructuran alrededor de tres preguntas de investigación: ¿cómo se están produciendo y qué caracterización presentan los beneficios que resultan como consecuencia de la implantación de la RSCE en los procesos de planificación estratégica de las compañías?, ¿qué factores esenciales y característicos de la RSCE pueden resultar críticos en los procesos de implantación y futuro desarrollo?, y ¿qué importancia puede tener en el medio y largo plazo el poder de decisión de compra de los consumidores y usuarios finales en la implantación y desarrollo de políticas de RSCE? ABSTRACT Corporate Social Responsibility (CSR) remains a study area of high interest today to both the academic community and businesses in general. Despite the large number of investigations of various aspects of CSR in past decades, and its generalized consideration by the world’s most important companies, there are still some key issues and fundamental questions to resolve. The complexity associated with the CSR construct and its inherently dynamic character, partly explains this statement. In its practical application, doubts about CSR arise today about its permanent implementation in normal business activities, the strategic relevance of related policies, and the possibility of making profits in the medium and long term. It is observed in this way the translation of the main debates towards the more strategic consequences of these policies, influenced by prestigious academic studies that characterize the so-called Strategic CSR (SCSR), and by leading certification agencies of CSR and sustainability reports. In this context, the main purpose of this investigation is to design a model of SCSR for implementation that allows one to not only identify the most important factors to consider for SCSR success, but also to characterize potential forms of value creation that can arise from its application. The selection of this research approach is justified because it is believed that important issues that are associated with CSR have not been sufficiently explored from the aspect of the strategic vision in the current context, and because value creation constitutes the most critical objective within the strategic planning steering processes. Thus, two methods are used to highlight which factors are essential in SCSR implementation processes, the end to which companies apply these policies, and the kind of results that they expect. These methods are: comparative analysis of case studies and quantitative statistical analysis. The case studies discuss in depth SCSR global policies under different perspectives to draw conclusions about the factors that facilitate or hinder permanent implantation in organizations. Their development is structured around a conceptual framework that is obtained by review of specific literature, and is complemented by primary and secondary research information. On the other hand, quantitative analysis is developed by means of three exploratory techniques: descriptive statistics, multiple regression and principal component analysis. Their combined application facilitates a contrast of highlighted aspects in analyzing cases, the final configuration of the implementation model, and the numerical expression of value creation by SCSR as a consequence of the strategic dimensions considered by companies. Finally, the results of the thesis are structured around three research questions: what are the benefits that result from the implementation of SCSR policies in companies’ strategic planning processes?, which essential SCSR factors are potentially critical in the implementation and future development of companies’ processes?, and how decisive in the medium and long term will be the purchase decision power of consumers to the success of SCSR policies?
Resumo:
While designing systems and products requires a deep understanding of influences that achieve desirable performance, the need for an efficient and systematic decision-making approach drives the need for optimization strategies. This paper provides the motivation for this topic as well as a description of applications in Computing Center of Madrid city Council. Optimization applications can be found in almost all areas of engineering. Typical problems in process, working with a database, arise in query design, entity model design and concurrent processes. This paper proposes a solution to optimize a night process dealing with millions of records with an overall performance of about eight times in computation time.
Resumo:
El presente trabajo tiene como objetivo diseñar un modelo de gestión de responsabilidad social sustentado en estándares internacionales para las empresas del sector petrolero venezolano. Esta investigación no se suscribe a un modelo epistémico en particular, como forma parcializada de ver la realidad. Por el contrario, se realizó un abordaje holístico de la investigación, entendiendo el evento de estudio, la gestión de la responsabilidad social, como un evento integrado por distintas visiones de la relación empresa – sociedad. La holística se refiere a una tendencia que permite entender la realidad desde el punto de vista de las múltiples interacciones que la caracterizan. Corresponde a una actitud integradora como también a una teoría explicativa que se orienta hacia una comprensión contextual de los procesos, de los protagonistas y de los eventos. Desde la concepción holística se determinó que la investigación es de tipo proyectiva. Este tipo de investigación propone soluciones a una situación determinada a partir de un proceso de indagación. Implica describir, comparar, explicar y proponer alternativas de cambios, lo que da lugar a los estadios de investigación. En cuanto al diseño de la investigación, aplicando el ciclo holístico, se tiene un diseño que es univariable, transeccional contemporáneo y de fuente mixta. Univariable, porque se enfoca en la gestión de responsabilidad social. Transeccional contemporáneo, porque el evento se estudia en la actualidad y se realiza una sola medición de los datos. De fuente mixta, porque en los estadios descriptivo y explicativo se aplica un diseño de campo, al recolectar los datos directamente en las empresas objeto de estudio, mientras que para los estadios analítico y comparativo se aplica un diseño documental. Las técnicas de recolección de la información estuvieron constituidas por fuentes primarias provenientes de la observación directa, la revisión documental y la aplicación de un cuestionario estructurado tipo escala Likert. El análisis de los datos comprendió el análisis estadístico descriptivo, la estimación de la fiabilidad y el análisis de coeficientes de correlación y análisis de ruta, a través del software estadístico SPSS v.19.0 y AMOS v.20. En los estadios descriptivo y explicativo se estudió la gestión de la responsabilidad social en las empresas del sector petrolero. Los resultados indicaron que las empresas del sector petrolero actúan bajo los lineamientos trazados en el Plan de Desarrollo Nacional y de acuerdo con las políticas, directrices, planes y estrategias para el sector de los hidrocarburos, dictadas por el Ministerio de Energía y Petróleo. También incluyen el compromiso social y la política ambiental en su filosofía de gestión. Tienen en su estructura organizacional una gerencia de desarrollo social que gestiona la responsabilidad social. Las actividades de inversión social se presentan poco estructuradas y en ocasiones se improvisan ya que atienden a los lineamientos políticos del Estado y no a una política interna de sostenibilidad del negocio petrolero. En cuanto a la integralidad de la gestión las empresas no consideran la responsabilidad social en todas las áreas, por lo que deben ampliar su concepción de una gestión responsable, redefiniendo estructuras, estrategias y procesos, con una orientación hacia una gestión sustentable. En cuanto a los estadios analítico y comparativo aplicados al estudio de las guías y estándares internacionales de responsabilidad social, se determinó que en términos de la integralidad de la gestión las iniciativas que destacan son: en cuanto a los principios, las directrices para empresas multinacionales según la OCDE y el Libro Verde de la Unión Europea. En relación con las guías de implementación y control, el Global Reporting Initiative y la norma ISO 26000. Y en cuanto a los sistemas de gestión el Sistema de Gestión Ética y Responsable (SGE 21) y el Sistema de Gestión de Responsabilidad Social IQNET SR10. Finalmente se diseñó una estructura para la gestión integral de responsabilidad social basada en los estándares internacionales y en el concepto de desarrollo sostenible. Por tanto abarca el desarrollo social, el equilibrio ecológico y el crecimiento económico, lo que permite un desarrollo sinérgico. La originalidad del enfoque consistió en la comprensión de la investigación desde una concepción holística, que permitió la integración de las teorías que tratan el tema de la responsabilidad social a través de un abordaje estructurado. ABSTRACT The present research aims to design a model of social responsibility management underpinned by international standards for companies in the Venezuelan oil sector. This research is not framed in a particular epistemic model as a biased way of looking at reality. Instead, a holistic approach to the research was conducted, understanding the event under study, the management of social responsibility as an event composed of different views of the relationship between corporation and society. The term holistic refers to a trend in understanding the reality from the point of view of the multiple interactions that characterize it. It corresponds to an integrative as well as an explanatory theory that is oriented towards a contextual understanding of the processes, of the participants and of the events. From the holistic conception it was determined that this research is of a projective type. The research proposes solutions to a given situation from a process of inquiry. It implies describing, comparing, explaining and proposing alternative changes, which results in the different research stages. Regarding the research design, applying the holistic cycle, an univariate, contemporary cross-sectional and mixed source design is obtained. It is univariate, because it focuses on the management of social responsibility. It is contemporary cross-sectional, because the event is studied in the present time and a single measurement of data is performed. It relies on mixed source, because in the descriptive and explanatory stages a field design is applied when collecting data directly from the companies under study, while for the analytical and comparative stages applies a documentary design is applied. The data collection techniques were constituted by primary sources from direct observation, document review and the implementation of a structured Likert scale questionnaire. The data analysis comprised descriptive statistical analysis, reliability estimates and analysis of correlation and the path analysis through the SPSS v.19.0 and AMOS V.20 statistical software. In the descriptive and explanatory stages social responsibility management in the oil sector companies was studied. The results indicated that the oil companies operate under the guidelines outlined in the National Development Plan and in accordance with the policies, guidelines, plans and strategies for the hydrocarbons sector, issued by the Ministry of Energy and Petroleum. They also include the social commitment and the environmental policy in their management philosophy. They have in their organizational structure a social development management which deals with social responsibility. Corporate social investment is presented poorly structured and is sometimes improvised since they follow the policy guidelines of the state and not the internal sustainability policy of the oil business. As for the integrity of management companies they do not consider social responsibility in all areas, so they need to expand their conception of responsible management, redefining structures, strategies and processes, with a focus on sustainable management. As for the analytical and comparative stages applied to the study of international guidelines and standards of social responsibility, it was determined that, in terms of the comprehensiveness of management, the initiatives that stand out are the following: With respect to principles, the guidelines for multinational enterprises as indicated by OECD and the Green Paper of the European Union. Regarding the implementation and control guides, the Global Reporting Initiative and the ISO 26000 standard are relevant. And as for management systems the Ethics and Responsible Management System (SGE 21) and the IQNet SR10 Social responsibility management system have to be considered. Finally a framework for the comprehensive management of social responsibility based on international standards and the concept of sustainable development was designed. Hence, social development, ecological balance and economic growth are included allowing therefore a synergistic development. The originality of this approach is the understanding of research in a holistic way, which allows the integration of theories that address the issue of social responsibility through a structured approximation.
Resumo:
El trabajo de fin de grado que se va a definir detalladamente en esta memoria, trata de poner de manifiesto muchos de los conocimientos que he adquirido a lo largo de la carrera, aplicándolos en un proyecto real. Se ha desarrollado una plataforma capaz de albergar ideas, escritas por personas de todo el mundo que buscan compartirlas con los demás, para que estas sean comentadas, valoradas y entre todos poder mejorarlas. Estas ideas pueden ser de cualquier ámbito, por tanto, se da la posibilidad de clasificarlas en las categorías que mejor encajen con la idea. La aplicación ofrece una API RESTful muy descriptiva, en la que se ha identificado y estructurado cada recurso, para que a través de los “verbos http” se puedan gestionar todos los elementos de una forma fácil y sencilla, independientemente del cliente que la utilice. La arquitectura está montada siguiendo el patrón de diseño modelo vista-controlador, utilizando las últimas tecnologías del mercado como Spring, Liferay, SmartGWT y MongoDB (entre muchas otras) con el objetivo de crear una aplicación segura, escalable y modulada, por lo que se ha tenido que integrar todos estos frameworks. Los datos de la aplicación se hacen persistentes en dos tipos de bases de datos, una relacional (MySQL) y otra no relacional (MongoDB), aprovechando al máximo las características que ofrecen cada una de ellas. El cliente propuesto es accesible mediante un navegador web, se basa en el portal de Liferay. Se han desarrollado varios “Portlets o Widgets”, que componen la estructura de contenido que ve el usuario final. A través de ellos se puede acceder al contenido de la aplicación, ideas, comentarios y demás contenidos sociales, de una forma agradable para el usuario, ya que estos “Portlets” se comunican entre sí y hacen peticiones asíncronas a la API RESTful sin necesidad de recargar toda la estructura de la página. Además, los usuarios pueden registrarse en el sistema para aportar más contenidos u obtener roles que les dan permisos para realizar acciones de administración. Se ha seguido una metodología “Scrum” para la realización del proyecto, con el objetivo de dividir el proyecto en tareas pequeñas y desarrollarlas de una forma ágil. Herramientas como “Jenkins” me han ayudado a una integración continua y asegurando mediante la ejecución de los test de prueba, que todos los componentes funcionan. La calidad ha sido un aspecto principal en el proyecto, se han seguido metodologías software y patrones de diseño para garantizar un diseño de calidad, reutilizable, óptimo y modulado. El uso de la herramienta “Sonar” ha ayudado a este cometido. Además, se ha implementado un sistema de pruebas muy completo de todos los componentes de la aplicación. En definitiva, se ha diseñado una aplicación innovadora de código abierto, que establece unas bases muy definidas para que si algún día se pone en producción, sirva a las personas para compartir pensamientos o ideas ayudando a mejorar el mundo en el que vivimos. ---ABSTRACT---The Final Degree Project, described in detail in this report, attempts to cover a lot of the knowledge I have acquired during my studies, applying it to a real project. The objective of the project has been to develop a platform capable of hosting ideas from people all over the world, where users can share their ideas, comment on and rate the ideas of others and together help improving them. Since these ideas can be of any kind, it is possible to classify them into suitable categories. The application offers a very descriptive API RESTful, where each resource has been identified and organized in a way that makes it possible to easily manage all the elements using the HTTP verbs, regardless of the client using it. The architecture has been built following the design pattern model-view-controller, using the latest market technologies such as Spring, Liferay, Smart GWT and MongoDB (among others) with the purpose of creating a safe, scalable and adjustable application. The data of the application are persistent in two different kinds of databases, one relational (MySQL) and the other non-relational (MongoDB), taking advantage of all the different features each one of them provides. The suggested client is accessible through a web browser and it is based in Liferay. Various “Portlets" or "Widgets” make up the final content of the page. Thanks to these Portlets, the user can access the application content (ideas, comments and categories) in a pleasant way as the Portlets communicate with each other making asynchronous requests to the API RESTful without the necessity to refresh the whole page. Furthermore, users can log on to the system to contribute with more contents or to obtain administrator privileges. The Project has been developed following a “Scrum” methodology, with the main objective being that of dividing the Project into smaller tasks making it possible to develop each task in a more agile and ultimately faster way. Tools like “Jenkins” have been used to guarantee a continuous integration and to ensure that all the components work correctly thanks to the execution of test runs. Quality has been one of the main aspects in this project, why design patterns and software methodologies have been used to guarantee a high quality, reusable, modular and optimized design. The “Sonar” technology has helped in the achievement of this goal. Furthermore, a comprehensive proofing system of all the application's components has been implemented. In conclusion, this Project has consisted in developing an innovative, free source application that establishes a clearly defined basis so that, if it someday will be put in production, it will allow people to share thoughts and ideas, and by doing so, help them to improve the World we live in.
Resumo:
El presente Trabajo fin Fin de Máster, versa sobre una caracterización preliminar del comportamiento de un robot de tipo industrial, configurado por 4 eslabones y 4 grados de libertad, y sometido a fuerzas de mecanizado en su extremo. El entorno de trabajo planteado es el de plantas de fabricación de piezas de aleaciones de aluminio para automoción. Este tipo de componentes parte de un primer proceso de fundición que saca la pieza en bruto. Para series medias y altas, en función de las propiedades mecánicas y plásticas requeridas y los costes de producción, la inyección a alta presión (HPDC) y la fundición a baja presión (LPC) son las dos tecnologías más usadas en esta primera fase. Para inyección a alta presión, las aleaciones de aluminio más empleadas son, en designación simbólica según norma EN 1706 (entre paréntesis su designación numérica); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). Para baja presión, EN AC AlSi7Mg0,3 (EN AC 42100). En los 3 primeros casos, los límites de Silicio permitidos pueden superan el 10%. En el cuarto caso, es inferior al 10% por lo que, a los efectos de ser sometidas a mecanizados, las piezas fabricadas en aleaciones con Si superior al 10%, se puede considerar que son equivalentes, diferenciándolas de la cuarta. Las tolerancias geométricas y dimensionales conseguibles directamente de fundición, recogidas en normas como ISO 8062 o DIN 1688-1, establecen límites para este proceso. Fuera de esos límites, las garantías en conseguir producciones con los objetivos de ppms aceptados en la actualidad por el mercado, obligan a ir a fases posteriores de mecanizado. Aquellas geometrías que, funcionalmente, necesitan disponer de unas tolerancias geométricas y/o dimensionales definidas acorde a ISO 1101, y no capaces por este proceso inicial de moldeado a presión, deben ser procesadas en una fase posterior en células de mecanizado. En este caso, las tolerancias alcanzables para procesos de arranque de viruta se recogen en normas como ISO 2768. Las células de mecanizado se componen, por lo general, de varios centros de control numérico interrelacionados y comunicados entre sí por robots que manipulan las piezas en proceso de uno a otro. Dichos robots, disponen en su extremo de una pinza utillada para poder coger y soltar las piezas en los útiles de mecanizado, las mesas de intercambio para cambiar la pieza de posición o en utillajes de equipos de medición y prueba, o en cintas de entrada o salida. La repetibilidad es alta, de centésimas incluso, definida según norma ISO 9283. El problema es que, estos rangos de repetibilidad sólo se garantizan si no se hacen esfuerzos o éstos son despreciables (caso de mover piezas). Aunque las inercias de mover piezas a altas velocidades hacen que la trayectoria intermedia tenga poca precisión, al inicio y al final (al coger y dejar pieza, p.e.) se hacen a velocidades relativamente bajas que hacen que el efecto de las fuerzas de inercia sean menores y que permiten garantizar la repetibilidad anteriormente indicada. No ocurre así si se quitara la garra y se intercambia con un cabezal motorizado con una herramienta como broca, mandrino, plato de cuchillas, fresas frontales o tangenciales… Las fuerzas ejercidas de mecanizado generarían unos pares en las uniones tan grandes y tan variables que el control del robot no sería capaz de responder (o no está preparado, en un principio) y generaría una desviación en la trayectoria, realizada a baja velocidad, que desencadenaría en un error de posición (ver norma ISO 5458) no asumible para la funcionalidad deseada. Se podría llegar al caso de que la tolerancia alcanzada por un pretendido proceso más exacto diera una dimensión peor que la que daría el proceso de fundición, en principio con mayor variabilidad dimensional en proceso (y por ende con mayor intervalo de tolerancia garantizable). De hecho, en los CNCs, la precisión es muy elevada, (pudiéndose despreciar en la mayoría de los casos) y no es la responsable de, por ejemplo la tolerancia de posición al taladrar un agujero. Factores como, temperatura de la sala y de la pieza, calidad constructiva de los utillajes y rigidez en el amarre, error en el giro de mesas y de colocación de pieza, si lleva agujeros previos o no, si la herramienta está bien equilibrada y el cono es el adecuado para el tipo de mecanizado… influyen más. Es interesante que, un elemento no específico tan común en una planta industrial, en el entorno anteriormente descrito, como es un robot, el cual no sería necesario añadir por disponer de él ya (y por lo tanto la inversión sería muy pequeña), puede mejorar la cadena de valor disminuyendo el costo de fabricación. Y si se pudiera conjugar que ese robot destinado a tareas de manipulación, en los muchos tiempos de espera que va a disfrutar mientras el CNC arranca viruta, pudiese coger un cabezal y apoyar ese mecanizado; sería doblemente interesante. Por lo tanto, se antoja sugestivo poder conocer su comportamiento e intentar explicar qué sería necesario para llevar esto a cabo, motivo de este trabajo. La arquitectura de robot seleccionada es de tipo SCARA. La búsqueda de un robot cómodo de modelar y de analizar cinemática y dinámicamente, sin limitaciones relevantes en la multifuncionalidad de trabajos solicitados, ha llevado a esta elección, frente a otras arquitecturas como por ejemplo los robots antropomórficos de 6 grados de libertad, muy populares a nivel industrial. Este robot dispone de 3 uniones, de las cuales 2 son de tipo par de revolución (1 grado de libertad cada una) y la tercera es de tipo corredera o par cilíndrico (2 grados de libertad). La primera unión, de tipo par de revolución, sirve para unir el suelo (considerado como eslabón número 1) con el eslabón número 2. La segunda unión, también de ese tipo, une el eslabón número 2 con el eslabón número 3. Estos 2 brazos, pueden describir un movimiento horizontal, en el plano X-Y. El tercer eslabón, está unido al eslabón número 4 por la unión de tipo corredera. El movimiento que puede describir es paralelo al eje Z. El robot es de 4 grados de libertad (4 motores). En relación a los posibles trabajos que puede realizar este tipo de robot, su versatilidad abarca tanto operaciones típicas de manipulación como operaciones de arranque de viruta. Uno de los mecanizados más usuales es el taladrado, por lo cual se elige éste para su modelización y análisis. Dentro del taladrado se elegirá para acotar las fuerzas, taladrado en macizo con broca de diámetro 9 mm. El robot se ha considerado por el momento que tenga comportamiento de sólido rígido, por ser el mayor efecto esperado el de los pares en las uniones. Para modelar el robot se utiliza el método de los sistemas multicuerpos. Dentro de este método existen diversos tipos de formulaciones (p.e. Denavit-Hartenberg). D-H genera una cantidad muy grande de ecuaciones e incógnitas. Esas incógnitas son de difícil comprensión y, para cada posición, hay que detenerse a pensar qué significado tienen. Se ha optado por la formulación de coordenadas naturales. Este sistema utiliza puntos y vectores unitarios para definir la posición de los distintos cuerpos, y permite compartir, cuando es posible y se quiere, para definir los pares cinemáticos y reducir al mismo tiempo el número de variables. Las incógnitas son intuitivas, las ecuaciones de restricción muy sencillas y se reduce considerablemente el número de ecuaciones e incógnitas. Sin embargo, las coordenadas naturales “puras” tienen 2 problemas. El primero, que 2 elementos con un ángulo de 0 o 180 grados, dan lugar a puntos singulares que pueden crear problemas en las ecuaciones de restricción y por lo tanto han de evitarse. El segundo, que tampoco inciden directamente sobre la definición o el origen de los movimientos. Por lo tanto, es muy conveniente complementar esta formulación con ángulos y distancias (coordenadas relativas). Esto da lugar a las coordenadas naturales mixtas, que es la formulación final elegida para este TFM. Las coordenadas naturales mixtas no tienen el problema de los puntos singulares. Y la ventaja más importante reside en su utilidad a la hora de aplicar fuerzas motrices, momentos o evaluar errores. Al incidir sobre la incógnita origen (ángulos o distancias) controla los motores de manera directa. El algoritmo, la simulación y la obtención de resultados se ha programado mediante Matlab. Para realizar el modelo en coordenadas naturales mixtas, es preciso modelar en 2 pasos el robot a estudio. El primer modelo se basa en coordenadas naturales. Para su validación, se plantea una trayectoria definida y se analiza cinemáticamente si el robot satisface el movimiento solicitado, manteniendo su integridad como sistema multicuerpo. Se cuantifican los puntos (en este caso inicial y final) que configuran el robot. Al tratarse de sólidos rígidos, cada eslabón queda definido por sus respectivos puntos inicial y final (que son los más interesantes para la cinemática y la dinámica) y por un vector unitario no colineal a esos 2 puntos. Los vectores unitarios se colocan en los lugares en los que se tenga un eje de rotación o cuando se desee obtener información de un ángulo. No son necesarios vectores unitarios para medir distancias. Tampoco tienen por qué coincidir los grados de libertad con el número de vectores unitarios. Las longitudes de cada eslabón quedan definidas como constantes geométricas. Se establecen las restricciones que definen la naturaleza del robot y las relaciones entre los diferentes elementos y su entorno. La trayectoria se genera por una nube de puntos continua, definidos en coordenadas independientes. Cada conjunto de coordenadas independientes define, en un instante concreto, una posición y postura de robot determinada. Para conocerla, es necesario saber qué coordenadas dependientes hay en ese instante, y se obtienen resolviendo por el método de Newton-Rhapson las ecuaciones de restricción en función de las coordenadas independientes. El motivo de hacerlo así es porque las coordenadas dependientes deben satisfacer las restricciones, cosa que no ocurre con las coordenadas independientes. Cuando la validez del modelo se ha probado (primera validación), se pasa al modelo 2. El modelo número 2, incorpora a las coordenadas naturales del modelo número 1, las coordenadas relativas en forma de ángulos en los pares de revolución (3 ángulos; ϕ1, ϕ 2 y ϕ3) y distancias en los pares prismáticos (1 distancia; s). Estas coordenadas relativas pasan a ser las nuevas coordenadas independientes (sustituyendo a las coordenadas independientes cartesianas del modelo primero, que eran coordenadas naturales). Es necesario revisar si el sistema de vectores unitarios del modelo 1 es suficiente o no. Para este caso concreto, se han necesitado añadir 1 vector unitario adicional con objeto de que los ángulos queden perfectamente determinados con las correspondientes ecuaciones de producto escalar y/o vectorial. Las restricciones habrán de ser incrementadas en, al menos, 4 ecuaciones; una por cada nueva incógnita. La validación del modelo número 2, tiene 2 fases. La primera, al igual que se hizo en el modelo número 1, a través del análisis cinemático del comportamiento con una trayectoria definida. Podrían obtenerse del modelo 2 en este análisis, velocidades y aceleraciones, pero no son necesarios. Tan sólo interesan los movimientos o desplazamientos finitos. Comprobada la coherencia de movimientos (segunda validación), se pasa a analizar cinemáticamente el comportamiento con trayectorias interpoladas. El análisis cinemático con trayectorias interpoladas, trabaja con un número mínimo de 3 puntos máster. En este caso se han elegido 3; punto inicial, punto intermedio y punto final. El número de interpolaciones con el que se actúa es de 50 interpolaciones en cada tramo (cada 2 puntos máster hay un tramo), resultando un total de 100 interpolaciones. El método de interpolación utilizado es el de splines cúbicas con condición de aceleración inicial y final constantes, que genera las coordenadas independientes de los puntos interpolados de cada tramo. Las coordenadas dependientes se obtienen resolviendo las ecuaciones de restricción no lineales con el método de Newton-Rhapson. El método de las splines cúbicas es muy continuo, por lo que si se desea modelar una trayectoria en el que haya al menos 2 movimientos claramente diferenciados, es preciso hacerlo en 2 tramos y unirlos posteriormente. Sería el caso en el que alguno de los motores se desee expresamente que esté parado durante el primer movimiento y otro distinto lo esté durante el segundo movimiento (y así sucesivamente). Obtenido el movimiento, se calculan, también mediante fórmulas de diferenciación numérica, las velocidades y aceleraciones independientes. El proceso es análogo al anteriormente explicado, recordando la condición impuesta de que la aceleración en el instante t= 0 y en instante t= final, se ha tomado como 0. Las velocidades y aceleraciones dependientes se calculan resolviendo las correspondientes derivadas de las ecuaciones de restricción. Se comprueba, de nuevo, en una tercera validación del modelo, la coherencia del movimiento interpolado. La dinámica inversa calcula, para un movimiento definido -conocidas la posición, velocidad y la aceleración en cada instante de tiempo-, y conocidas las fuerzas externas que actúan (por ejemplo el peso); qué fuerzas hay que aplicar en los motores (donde hay control) para que se obtenga el citado movimiento. En la dinámica inversa, cada instante del tiempo es independiente de los demás y tiene una posición, una velocidad y una aceleración y unas fuerzas conocidas. En este caso concreto, se desean aplicar, de momento, sólo las fuerzas debidas al peso, aunque se podrían haber incorporado fuerzas de otra naturaleza si se hubiese deseado. Las posiciones, velocidades y aceleraciones, proceden del cálculo cinemático. El efecto inercial de las fuerzas tenidas en cuenta (el peso) es calculado. Como resultado final del análisis dinámico inverso, se obtienen los pares que han de ejercer los cuatro motores para replicar el movimiento prescrito con las fuerzas que estaban actuando. La cuarta validación del modelo consiste en confirmar que el movimiento obtenido por aplicar los pares obtenidos en la dinámica inversa, coinciden con el obtenido en el análisis cinemático (movimiento teórico). Para ello, es necesario acudir a la dinámica directa. La dinámica directa se encarga de calcular el movimiento del robot, resultante de aplicar unos pares en motores y unas fuerzas en el robot. Por lo tanto, el movimiento real resultante, al no haber cambiado ninguna condición de las obtenidas en la dinámica inversa (pares de motor y fuerzas inerciales debidas al peso de los eslabones) ha de ser el mismo al movimiento teórico. Siendo así, se considera que el robot está listo para trabajar. Si se introduce una fuerza exterior de mecanizado no contemplada en la dinámica inversa y se asigna en los motores los mismos pares resultantes de la resolución del problema dinámico inverso, el movimiento real obtenido no es igual al movimiento teórico. El control de lazo cerrado se basa en ir comparando el movimiento real con el deseado e introducir las correcciones necesarias para minimizar o anular las diferencias. Se aplican ganancias en forma de correcciones en posición y/o velocidad para eliminar esas diferencias. Se evalúa el error de posición como la diferencia, en cada punto, entre el movimiento teórico deseado en el análisis cinemático y el movimiento real obtenido para cada fuerza de mecanizado y una ganancia concreta. Finalmente, se mapea el error de posición obtenido para cada fuerza de mecanizado y las diferentes ganancias previstas, graficando la mejor precisión que puede dar el robot para cada operación que se le requiere, y en qué condiciones. -------------- This Master´s Thesis deals with a preliminary characterization of the behaviour for an industrial robot, configured with 4 elements and 4 degrees of freedoms, and subjected to machining forces at its end. Proposed working conditions are those typical from manufacturing plants with aluminium alloys for automotive industry. This type of components comes from a first casting process that produces rough parts. For medium and high volumes, high pressure die casting (HPDC) and low pressure die casting (LPC) are the most used technologies in this first phase. For high pressure die casting processes, most used aluminium alloys are, in simbolic designation according EN 1706 standard (between brackets, its numerical designation); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). For low pressure, EN AC AlSi7Mg0,3 (EN AC 42100). For the 3 first alloys, Si allowed limits can exceed 10% content. Fourth alloy has admisible limits under 10% Si. That means, from the point of view of machining, that components made of alloys with Si content above 10% can be considered as equivalent, and the fourth one must be studied separately. Geometrical and dimensional tolerances directly achievables from casting, gathered in standards such as ISO 8062 or DIN 1688-1, establish a limit for this process. Out from those limits, guarantees to achieve batches with objetive ppms currently accepted by market, force to go to subsequent machining process. Those geometries that functionally require a geometrical and/or dimensional tolerance defined according ISO 1101, not capable with initial moulding process, must be obtained afterwards in a machining phase with machining cells. In this case, tolerances achievables with cutting processes are gathered in standards such as ISO 2768. In general terms, machining cells contain several CNCs that they are interrelated and connected by robots that handle parts in process among them. Those robots have at their end a gripper in order to take/remove parts in machining fixtures, in interchange tables to modify position of part, in measurement and control tooling devices, or in entrance/exit conveyors. Repeatibility for robot is tight, even few hundredths of mm, defined according ISO 9283. Problem is like this; those repeatibilty ranks are only guaranteed when there are no stresses or they are not significant (f.e. due to only movement of parts). Although inertias due to moving parts at a high speed make that intermediate paths have little accuracy, at the beginning and at the end of trajectories (f.e, when picking part or leaving it) movement is made with very slow speeds that make lower the effect of inertias forces and allow to achieve repeatibility before mentioned. It does not happens the same if gripper is removed and it is exchanged by an spindle with a machining tool such as a drilling tool, a pcd boring tool, a face or a tangential milling cutter… Forces due to machining would create such big and variable torques in joints that control from the robot would not be able to react (or it is not prepared in principle) and would produce a deviation in working trajectory, made at a low speed, that would trigger a position error (see ISO 5458 standard) not assumable for requested function. Then it could be possible that tolerance achieved by a more exact expected process would turn out into a worst dimension than the one that could be achieved with casting process, in principle with a larger dimensional variability in process (and hence with a larger tolerance range reachable). As a matter of fact, accuracy is very tight in CNC, (its influence can be ignored in most cases) and it is not the responsible of, for example position tolerance when drilling a hole. Factors as, room and part temperature, manufacturing quality of machining fixtures, stiffness at clamping system, rotating error in 4th axis and part positioning error, if there are previous holes, if machining tool is properly balanced, if shank is suitable for that machining type… have more influence. It is interesting to know that, a non specific element as common, at a manufacturing plant in the enviroment above described, as a robot (not needed to be added, therefore with an additional minimum investment), can improve value chain decreasing manufacturing costs. And when it would be possible to combine that the robot dedicated to handling works could support CNCs´ works in its many waiting time while CNCs cut, and could take an spindle and help to cut; it would be double interesting. So according to all this, it would be interesting to be able to know its behaviour and try to explain what would be necessary to make this possible, reason of this work. Selected robot architecture is SCARA type. The search for a robot easy to be modeled and kinematically and dinamically analyzed, without significant limits in the multifunctionality of requested operations, has lead to this choice. Due to that, other very popular architectures in the industry, f.e. 6 DOFs anthropomorphic robots, have been discarded. This robot has 3 joints, 2 of them are revolute joints (1 DOF each one) and the third one is a cylindrical joint (2 DOFs). The first joint, a revolute one, is used to join floor (body 1) with body 2. The second one, a revolute joint too, joins body 2 with body 3. These 2 bodies can move horizontally in X-Y plane. Body 3 is linked to body 4 with a cylindrical joint. Movement that can be made is paralell to Z axis. The robt has 4 degrees of freedom (4 motors). Regarding potential works that this type of robot can make, its versatility covers either typical handling operations or cutting operations. One of the most common machinings is to drill. That is the reason why it has been chosen for the model and analysis. Within drilling, in order to enclose spectrum force, a typical solid drilling with 9 mm diameter. The robot is considered, at the moment, to have a behaviour as rigid body, as biggest expected influence is the one due to torques at joints. In order to modelize robot, it is used multibodies system method. There are under this heading different sorts of formulations (f.e. Denavit-Hartenberg). D-H creates a great amount of equations and unknown quantities. Those unknown quatities are of a difficult understanding and, for each position, one must stop to think about which meaning they have. The choice made is therefore one of formulation in natural coordinates. This system uses points and unit vectors to define position of each different elements, and allow to share, when it is possible and wished, to define kinematic torques and reduce number of variables at the same time. Unknown quantities are intuitive, constrain equations are easy and number of equations and variables are strongly reduced. However, “pure” natural coordinates suffer 2 problems. The first one is that 2 elements with an angle of 0° or 180°, give rise to singular positions that can create problems in constrain equations and therefore they must be avoided. The second problem is that they do not work directly over the definition or the origin of movements. Given that, it is highly recommended to complement this formulation with angles and distances (relative coordinates). This leads to mixed natural coordinates, and they are the final formulation chosen for this MTh. Mixed natural coordinates have not the problem of singular positions. And the most important advantage lies in their usefulness when applying driving forces, torques or evaluating errors. As they influence directly over origin variable (angles or distances), they control motors directly. The algorithm, simulation and obtaining of results has been programmed with Matlab. To design the model in mixed natural coordinates, it is necessary to model the robot to be studied in 2 steps. The first model is based in natural coordinates. To validate it, it is raised a defined trajectory and it is kinematically analyzed if robot fulfils requested movement, keeping its integrity as multibody system. The points (in this case starting and ending points) that configure the robot are quantified. As the elements are considered as rigid bodies, each of them is defined by its respectively starting and ending point (those points are the most interesting ones from the point of view of kinematics and dynamics) and by a non-colinear unit vector to those points. Unit vectors are placed where there is a rotating axis or when it is needed information of an angle. Unit vectors are not needed to measure distances. Neither DOFs must coincide with the number of unit vectors. Lengths of each arm are defined as geometrical constants. The constrains that define the nature of the robot and relationships among different elements and its enviroment are set. Path is generated by a cloud of continuous points, defined in independent coordinates. Each group of independent coordinates define, in an specific instant, a defined position and posture for the robot. In order to know it, it is needed to know which dependent coordinates there are in that instant, and they are obtained solving the constraint equations with Newton-Rhapson method according to independent coordinates. The reason to make it like this is because dependent coordinates must meet constraints, and this is not the case with independent coordinates. When suitability of model is checked (first approval), it is given next step to model 2. Model 2 adds to natural coordinates from model 1, the relative coordinates in the shape of angles in revoluting torques (3 angles; ϕ1, ϕ 2 and ϕ3) and distances in prismatic torques (1 distance; s). These relative coordinates become the new independent coordinates (replacing to cartesian independent coordinates from model 1, that they were natural coordinates). It is needed to review if unit vector system from model 1 is enough or not . For this specific case, it was necessary to add 1 additional unit vector to define perfectly angles with their related equations of dot and/or cross product. Constrains must be increased in, at least, 4 equations; one per each new variable. The approval of model 2 has two phases. The first one, same as made with model 1, through kinematic analysis of behaviour with a defined path. During this analysis, it could be obtained from model 2, velocities and accelerations, but they are not needed. They are only interesting movements and finite displacements. Once that the consistence of movements has been checked (second approval), it comes when the behaviour with interpolated trajectories must be kinematically analyzed. Kinematic analysis with interpolated trajectories work with a minimum number of 3 master points. In this case, 3 points have been chosen; starting point, middle point and ending point. The number of interpolations has been of 50 ones in each strecht (each 2 master points there is an strecht), turning into a total of 100 interpolations. The interpolation method used is the cubic splines one with condition of constant acceleration both at the starting and at the ending point. This method creates the independent coordinates of interpolated points of each strecht. The dependent coordinates are achieved solving the non-linear constrain equations with Newton-Rhapson method. The method of cubic splines is very continuous, therefore when it is needed to design a trajectory in which there are at least 2 movements clearly differents, it is required to make it in 2 steps and join them later. That would be the case when any of the motors would keep stopped during the first movement, and another different motor would remain stopped during the second movement (and so on). Once that movement is obtained, they are calculated, also with numerical differenciation formulas, the independent velocities and accelerations. This process is analogous to the one before explained, reminding condition that acceleration when t=0 and t=end are 0. Dependent velocities and accelerations are calculated solving related derivatives of constrain equations. In a third approval of the model it is checked, again, consistence of interpolated movement. Inverse dynamics calculates, for a defined movement –knowing position, velocity and acceleration in each instant of time-, and knowing external forces that act (f.e. weights); which forces must be applied in motors (where there is control) in order to obtain requested movement. In inverse dynamics, each instant of time is independent of the others and it has a position, a velocity, an acceleration and known forces. In this specific case, it is intended to apply, at the moment, only forces due to the weight, though forces of another nature could have been added if it would have been preferred. The positions, velocities and accelerations, come from kinematic calculation. The inertial effect of forces taken into account (weight) is calculated. As final result of the inverse dynamic analysis, the are obtained torques that the 4 motors must apply to repeat requested movement with the forces that were acting. The fourth approval of the model consists on confirming that the achieved movement due to the use of the torques obtained in the inverse dynamics, are in accordance with movements from kinematic analysis (theoretical movement). For this, it is necessary to work with direct dynamics. Direct dynamic is in charge of calculating the movements of robot that results from applying torques at motors and forces at the robot. Therefore, the resultant real movement, as there was no change in any condition of the ones obtained at the inverse dynamics (motor torques and inertial forces due to weight of elements) must be the same than theoretical movement. When these results are achieved, it is considered that robot is ready to work. When a machining external force is introduced and it was not taken into account before during the inverse dynamics, and torques at motors considered are the ones of the inverse dynamics, the real movement obtained is not the same than the theoretical movement. Closed loop control is based on comparing real movement with expected movement and introducing required corrrections to minimize or cancel differences. They are applied gains in the way of corrections for position and/or tolerance to remove those differences. Position error is evaluated as the difference, in each point, between theoretical movemment (calculated in the kinematic analysis) and the real movement achieved for each machining force and for an specific gain. Finally, the position error obtained for each machining force and gains are mapped, giving a chart with the best accuracy that the robot can give for each operation that has been requested and which conditions must be provided.
Resumo:
El taller de proyectos constituye el núcleo de la enseñanza arquitectónica. Estudiar sus procesos educativos en la actualidad implica la contextualización teórica del acto educativo y la revisión histórica de la evolución de su estructura social. Esta estructura, es heredera de la larga tradición del taller donde los maestros de obra, artesanos, arquitectos y artistas, se ocupaban desde siempre de la enseñanza de la construcción, de la artesanía, del diseño arquitectónico y del arte. Los aprendices se sometían a la autoridad de sus maestros y pasaban horas practicando, produciendo y aprendiendo junto a ellos. Con la aparición de las primeras Academias de arte y posteriormente de arquitectura, se evidenció un progresivo interés de los Estados hacía los productos artísticos y arquitectónicos. La consideración de las artes y de la arquitectura como proyecto estatal, supuso la construcción lenta, pero consolidable, de un proyecto educativo paralelo, coexistiendo simultáneamente con los talleres de los maestros, pero sin posibilidad de integración, hasta mucho más tarde. La “teoría”, que es de lo que se ocupaba la academia, con la “práctica” que es lo que se desarrollaba en el taller, no encontraban fácilmente la manera de encajarse y complementarse mutuamente en un proyecto educativo común. Las concepciones educativas de ambos, afrontaban la enseñanza y el aprendizaje desde puntos de vista también diferentes; mientras la Academia representaba el conocimiento validado y explicitado, en el taller se trabajaba con un conocimiento tácito e implícito. En la práctica artística del taller era donde se producía el aprendizaje mientras que en la Academia es donde se validaba. Esta estructura llegó en muchas ocasiones a situaciones extremas, no siendo casual que las más grandes crisis registradas en la historia de la enseñanza de las artes, coincidieran con un aumento de la distancia entre estas dos “instituciones”, talleres y academias. Por otra parte, parece que cualquier proyecto o concepto innovador, se ha fundado sobre la redistribución de estos equilibrios perdidos. En dicho contexto, en el campo de la educación y especialmente en el siglo XX, surge un debate que se estructura en base a los fines de la educación, contemplando dos posturas bien diferenciadas. Una de ellas sostiene como fin primordial de la educación, el desarrollo de la conciencia y la reciprocidad social del individuo. La otra, fija como fin el desarrollo de su singularidad. La búsqueda del equilibrio entre ambas, parte del interés por fomentar el crecimiento de lo que cada ser humano posee de individual, armonizándolo con la unidad orgánica del grupo social al que pertenece (Read 2010, 33). Sobre esta tensión se han basado muchos de los discursos pedagógicos y especialmente los aquí usados. La estructura social en los talleres de proyectos arquitectónicos, presenta hoy día una máxima integración entre las dos instituciones, el taller y la Academia, tanto a nivel del espacio, donde tiene lugar la enseñanza, como a nivel conceptual y pedagógico. Los talleres de proyectos poseen un formato de enseñanza y aprendizaje que constituye un paradigma (Schön, 2008) no solo dentro, sino también fuera del campo arquitectónico. Bajo este formato se complementa el aprendizaje práctico con el teórico y la producción, con la validación del conocimiento. Aunque tal estructura pedagógica presenta importantes variaciones entre unas escuelas de arquitectura y otras, los principales procesos que tienen lugar, son lo suficientemente similares, como para poder ser examinados desde una perspectiva común. Esta investigación, estudia el taller de proyectos desde un aspecto pedagógico, que contempla tanto los discursos educativos, como la historia de la evolución del taller como constructo social. El análisis se estructura sobre los elementos fundantes del acto didáctico: un sujeto que aprende, un sujeto que enseña, un método, la estrategia o procedimiento a través del que se enseña, un contenido y el propio acto docente (Sánchez Cerezo, 1994, 530). Además, se han añadido otros dos elementos que se consideran fundamentales para llevar a cabo el estudio: el contexto de la enseñanza, tanto el tangible como el intangible y la evaluación de la enseñanza y del aprendizaje. El caso de estudio de la presente investigación se sitúa en la Escuela de Arquitectura de Madrid en la actualidad. Sin embargo, no se pretende generar un retrato exacto de esta institución sino utilizarla como ejemplo principal en el desarrollo de los capítulos del método, contenido, acto docente y contexto, en los que también se introducen ejemplos de otras escuelas de arquitectura que amplían los argumentos presentados que constituyen la contextualización teórica del acto pedagógico en los talleres de proyectos arquitectónicos. ABSTRACT Design studio constitutes the core of architectural education. To study its current educational processes involves a theoretical approach of its educational praxis and an historic revision of how its social structure evolved. This structure is inherited from the long tradition of the workshop in which master masons, craftsmen, architects and artists have always been in charge of teaching construction, crafts, architectural design and art. Apprentices were subjected to the authority of their teachers and spent hours practicing, producing and learning along with them. With the establishment of the first Academies of Art and later of Architecture, the interest of the State in artistic and architectural products started growing. The understanding of arts and architecture as a state project entailed the slow, but robust development of a parallel education project. This project coexisted with the masters’ workshops, without the possibility of integration between two, until much later. It was difficult to find a way to synthesize academic “theory” with workshop “practice”. The workshops’ and the Academy's conception about teaching and learning differed significantly. While the Academy represented a verified and explicit knowledge, the workshop worked with a tacit and implicit knowledge. The workshops produced education through artistic practice, while the the Academy organized and verified knowledge. This dual framework has on occasions reached extremes. It is no accident that the biggest known crises in the history of arts education coincide with an increase in the distance between these two "institutions", the workshops and Academies. Furthermore, it seems that most innovative concepts or projects have been founded on restoring the lost balance between the two. In this context, in the field of education, and especially during the 20th century, a debate that contemplated the purpose of education and resulted in two quite differentiated approaches, emerged,. One position claims as the primary purpose of education the development of social awareness and mutuality in individuals. The other approach sets as a purpose developing each student's uniqueness. The quest for the right balance between these two positions is based on the assumption that the general purpose of education is to foster the growth of what is individual in each human being, at the same time harmonizing the individuality thus educed with the organic unity of the social group to which the individual belongs (Read, 2010, 33). This tension forms the basis for many pedagogical discourses, especially the ones utilized in this dissertation. The social structure of architecture studios today demonstrates a very high level of integration between the two institutions, the workshop and the Academy, both in terms of space —where the teaching takes place— as well as on a conceptual and pedagogical level. Architecture studios today have developed a format for teaching and learning that has established a paradigm (Schön, 2008) , not only in architecture, but also in other fields. Under this paradigm, practical and theoretical learning, as well as production and verification of knowledge, complement each other. And although this pedagogical structure presents important variations among different schools of architecture, the principal processes that take place in the studio are sufficiently similar so as to be examined from a common perspective. This research examines the architecture studio from a pedagogical point of view, that takes into account both the educational discourses, as well as the historical evolution of the workshop as a social structure. The analysis presented here is structured on the fundamentals of the teaching act: an individual learning, an individual teaching, a method, strategy or procedure for teaching and learning, the content and the teaching act itself (Sánchez Cerezo, 1994, 530). Two extra elements that were considered essential for carrying out this study have also been added: the context in which teaching takes place, tangible as well as intangible, and the evaluation of teaching and learning. The Madrid School of Architecture in the present day served as a case study. However the aim is not to generate an accurate portrayal of this school but to use it as the principal example for the development of the chapters of method, content, teaching act and context. In addition to that, examples from other schools of architecture are introduced in order to further the presented arguments that constitute the theoretical contextualization of the pedagogical act in architecture studios.
Resumo:
La formación de postgrado en ingeniería es muy importante para mejorar la competitividad y lograr el desarrollo en los países. Para ello es necesaria una fuerte vinculación de la universidad con su entorno socio económico de modo que los objetivos que se plantea en sus programas formativos sean coherentes con las necesidades reales de los beneficiarios: los estudiantes, la universidad y la comunidad. Es decir, los programas deben ser pertinentes. Y en los países en vías de desarrollo este tema es aún más importante. Se necesita modelos de evaluación que midan este grado de adecuación entre los objetivos de los programas con las necesidades de los estudiantes y las partes interesadas. Sin embargo, los modelos de evaluación existentes tienen principalmente fines de acreditación y están diseñados para evaluar la eficacia, es decir si los resultados obtenidos están de acuerdo con la misión y los objetivos planteados. Su objetivo no es medir la pertinencia. Esta investigación tiene como objetivo diseñar un modelo de evaluación de la pertinencia de maestrías en ingeniería y aplicarlo a un caso concreto. Se trata de maestrías que ya están en funcionamiento y son dictadas en una universidad en un país en desarrollo. Para diseñar el modelo se define primero el concepto de pertinencia de una maestría en ingeniería haciendo una revisión bibliográfica y consultando a expertos en los temas de pertinencia de la educación superior y formación en postgrado en ingeniería. Se utiliza una definición operativa que facilita luego la identificación de factores e indicadores de evaluación. Se identifica dos tipos de pertinencia: local y global. La pertinencia global está relacionada con la inserción de la maestría en el sistema global de producción de conocimiento. La pertinencia local tiene tres dimensiones: la personal, relacionada con la satisfacción de necesidades de los estudiantes, la institucional, relacionada con las necesidades e intereses de la universidad que acoge a la maestría y la pertinencia social, ligada a la satisfacción de necesidades y demandas de la comunidad local y nacional. El modelo diseñado es aplicado en la maestría en Ingeniería Civil con mención en Ingeniería Vial de la Universidad de Piura, Perú lo que permite obtener conclusiones para su aplicación en otras maestrías. ABSTRACT Graduate engineering education is very important to improve competitiveness and achieve development in countries. It is necessary a strong linkage between university and its socio economic environment, so that programs objectives are consistent with the real needs of the students, university and community. That is to say programs must be relevant. And in developing countries this issue is very important. Evaluation models to measure the degree of adequacy between the programs objectives with the needs of students and stakeholders is needed. However, existing evaluation models have mainly the purpose of accreditation and are designed to evaluate the efficacy. They evaluate if the results are consistent with the mission and objectives. Their goal is not to measure the relevance. This work aimed to design a model for evaluating the relevance of master's degrees in engineering and applied to a specific case. They must be masters already in operation and are taught at a university in a developing country. In order to build the model, first concept of relevance of a master's degree in engineering was defined. Literature was reviewed and we consulted experts on issues of relevance of higher education and graduate engineering education. An operational definition is used to facilitate the identification of factors and evaluation indicators. Local and global: two types of relevance were identified. The global relevance is related to the inclusion of Master in the global system of knowledge production. The local relevance has three dimensions: personal, related to meeting students' needs, institutional, related to the needs and interests of university that houses the Master and social relevance, linked to the satisfaction of needs and demands of local and national community. The designed model is applied to the Master degree in Civil Engineering with a major in Traffic Engineering of Universidad de Piura, Peru which allowed to obtain conclusions for application in other masters.
Resumo:
Overhead rigid conductor arrangements for current collection for railway traction have some advantages compared to other, more conventional, energy supply systems. They are simple, robust and easily maintained, not to mention their flexibility as to the required height for installation, which makes them particularly suitable for use in subway infrastructures. Nevertheless, due to the increasing speeds of new vehicles running on modern subway lines, a more efficient design is required for this kind of system. In this paper, the authors present a dynamic analysis of overhead conductor rail systems focused on the design of a new conductor profile with a dynamic behaviour superior to that of the system currently in use. This means that either an increase in running speed can be attained, which at present does not exceed 110 km/h, or an increase in the distance between the rigid catenary supports with the ensuing saving in installation costs. This study has been carried out using simulation techniques. The ANSYS programme has been used for the finite element modelling and the SIMPACK programme for the elastic multibody systems analysis.
Resumo:
This work is based on the prototype High Engineering Test Reactor (HTTR) of the Japan Agency of Energy Atomic (JAEA). Its objective is to describe an adequate deterministic model to be used in the assessment of its design safety margins via damage domains. The concept of damage domain is defined and it is shown its relevance in the ongoing effort to apply dynamic risk assessment methods and tools based on the Theory of Stimulated Dynamics (TSD). To illustrate, we present results of an abnormal control rod (CR) withdrawal during subcritical condition and its comparison with results obtained by JAEA. No attempt is made yet to actually assess the detailed scenarios, rather to show how the approach may handle events of its kind
Resumo:
The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.
Resumo:
Abstract. The ASSERT project de?ned new software engineering methods and tools for the development of critical embedded real-time systems in the space domain. The ASSERT model-driven engineering process was one of the achievements of the project and is based on the concept of property- preserving model transformations. The key element of this process is that non-functional properties of the software system must be preserved during model transformations. Properties preservation is carried out through model transformations compliant with the Ravenscar Pro?le and provides a formal basis to the process. In this way, the so-called Ravenscar Computational Model is central to the whole ASSERT process. This paper describes the work done in the HWSWCO study, whose main objective has been to address the integration of the Hardware/Software co-design phase in the ASSERT process. In order to do that, non-functional properties of the software system must also be preserved during hardware synthesis. Keywords : Ada 2005, Ravenscar pro?le, Hardware/Software co-design, real- time systems, high-integrity systems, ORK
Resumo:
This paper describes the design and application of the Atmospheric Evaluation and Research Integrated model for Spain (AERIS). Currently, AERIS can provide concentration profiles of NO2, O3, SO2, NH3, PM, as a response to emission variations of relevant sectors in Spain. Results are calculated using transfer matrices based on an air quality modelling system (AQMS) composed by the WRF (meteorology), SMOKE (emissions) and CMAQ (atmospheric-chemical processes) models. The AERIS outputs were statistically tested against the conventional AQMS and observations, revealing a good agreement in both cases. At the moment, integrated assessment in AERIS focuses only on the link between emissions and concentrations. The quantification of deposition, impacts (health, ecosystems) and costs will be introduced in the future. In conclusion, the main asset of AERIS is its accuracy in predicting air quality outcomes for different scenarios through a simple yet robust modelling framework, avoiding complex programming and long computing times.
Resumo:
We have developed new analytical expressions for designing liquid crystal (LC) microlenses. These equations are based on a novel equivalent electric circuit and can be used to create an optimum design for the LC lenses in which the lens diameter ranges from a few micrometers to several millimeters. Thus far, only experimental studies have been conducted on the LC lenses. The analytical expressions developed in this letter depend on various manufacturing parameters and can be used to design lenses with specific focal lengths and a parabolic phase profile. The required driving scheme (modal or hole-patterned) can be predicted. The LC microlenses were manufactured and electrooptically characterized: the measurements were compared using an analytical approach.