7 resultados para Demanda, emisión monetaria, corrección de errores, vectores autorregresivos, pronóstico.

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La finalidad última do codificación y decodificación es conseguir que el mensaje reconstituido sea idéntico al original. Sin la teoría de códigos los mensajes binarios se caracterizan por vectores o también por polinomios con coeficientes pertenecientes al cuerpo dé Galois GF [0,l]. Sobre los conceptos de código, código lineal, código cíclico,generación polinómica de códigos, distancia, síndrome, relaciones con los elementos de un cuerpo finito, detección y corrección, etc., el mejor autor de referencia sigue siendo Peterson

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo trata de la aplicación de los códigos detectores y correctores de error al diseño de los Computadores Tolerantes a Fallos, planteando varias estrategias óptimas de detección y corrección para algunos subsistemas. En primer lugar,"se justifica la necesidad de aplicar técnicas de Tolerancia a Fallos. A continuación se hacen previsiones de evolución de la tecnología de Integración, así como una tipificación de los fallos en circuitos Integrados. Partiendo de una recopilación y revisión de la teoría de códigos, se hace un desarrollo teórico cuya aplicación permite obligar a que algunos de estos códigos sean cerrados respecto de las operaciones elementales que se ejecutan en un computador. Se plantean estrategias óptimas de detección y corrección de error para sus subsistemas mas Importantes, culminando en el diseño, realización y prueba de una unidad de memoria y una unidad de proceso de datos con amplias posibilidades de detección y corrección de errores.---ABSTRACT---The present work deals with the application of error detecting and correctíng codes to the désign of Fault Tolerant Computers. Several óptimo» detection and correction strategies are presented to be applied in some subsystems. First of all, the necessity of applying Fault Tolerant techniques is explained. Later, a study on íntegration technology evolution and typification of Integrated circuit faults 1s developed. Based on a compilation and revisión of Coding Theory, a theoretical study is carried out. It allows us to force some of these codes to be closed over elementary operations. Optimum detection and correction techniques are presented for the raost important subsystems. Flnally, the design, building and testing of a memory unit and a processing unit provided with wlde error detection and correction posibilities 1s shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algunos trabajos recientes han desarrollado varias alternativas a Cascade, entre las cuales destacan aquellas basadas en el uso de técnicas de codificación modernas. Por ejemplo, a través del uso de códigos Low-Density Parity-Check (LDPC) hoy día encontramos varias propuestas que permiten mejorar la eficiencia de la reconciliación de clave para ratios de error elevados. Al utilizar códigos LDPC tan sólo se requiere un único uso del canal de comunicación. Estas propuestas se basan en una técnica conocida como “codificación de síndrome” que permite aplicar métodos de corrección de errores para reconciliar cadenas aleatorias correlacionadas. En una de estas propuestas aplicamos dos técnicas conocidas en codificación, cómo son la perforación y el acortado de símbolos, para adaptar en tiempo real el ratio de información proporcionado por el síndrome intercambiado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los sensores inerciales (acelerómetros y giróscopos) se han ido introduciendo poco a poco en dispositivos que usamos en nuestra vida diaria gracias a su minituarización. Hoy en día todos los smartphones contienen como mínimo un acelerómetro y un magnetómetro, siendo complementados en losmás modernos por giróscopos y barómetros. Esto, unido a la proliferación de los smartphones ha hecho viable el diseño de sistemas basados en las medidas de sensores que el usuario lleva colocados en alguna parte del cuerpo (que en un futuro estarán contenidos en tejidos inteligentes) o los integrados en su móvil. El papel de estos sensores se ha convertido en fundamental para el desarrollo de aplicaciones contextuales y de inteligencia ambiental. Algunos ejemplos son el control de los ejercicios de rehabilitación o la oferta de información referente al sitio turístico que se está visitando. El trabajo de esta tesis contribuye a explorar las posibilidades que ofrecen los sensores inerciales para el apoyo a la detección de actividad y la mejora de la precisión de servicios de localización para peatones. En lo referente al reconocimiento de la actividad que desarrolla un usuario, se ha explorado el uso de los sensores integrados en los dispositivos móviles de última generación (luz y proximidad, acelerómetro, giróscopo y magnetómetro). Las actividades objetivo son conocidas como ‘atómicas’ (andar a distintas velocidades, estar de pie, correr, estar sentado), esto es, actividades que constituyen unidades de actividades más complejas como pueden ser lavar los platos o ir al trabajo. De este modo, se usan algoritmos de clasificación sencillos que puedan ser integrados en un móvil como el Naïve Bayes, Tablas y Árboles de Decisión. Además, se pretende igualmente detectar la posición en la que el usuario lleva el móvil, no sólo con el objetivo de utilizar esa información para elegir un clasificador entrenado sólo con datos recogidos en la posición correspondiente (estrategia que mejora los resultados de estimación de la actividad), sino también para la generación de un evento que puede producir la ejecución de una acción. Finalmente, el trabajo incluye un análisis de las prestaciones de la clasificación variando el tipo de parámetros y el número de sensores usados y teniendo en cuenta no sólo la precisión de la clasificación sino también la carga computacional. Por otra parte, se ha propuesto un algoritmo basado en la cuenta de pasos utilizando informaiii ción proveniente de un acelerómetro colocado en el pie del usuario. El objetivo final es detectar la actividad que el usuario está haciendo junto con la estimación aproximada de la distancia recorrida. El algoritmo de cuenta pasos se basa en la detección de máximos y mínimos usando ventanas temporales y umbrales sin requerir información específica del usuario. El ámbito de seguimiento de peatones en interiores es interesante por la falta de un estándar de localización en este tipo de entornos. Se ha diseñado un filtro extendido de Kalman centralizado y ligeramente acoplado para fusionar la información medida por un acelerómetro colocado en el pie del usuario con medidas de posición. Se han aplicado también diferentes técnicas de corrección de errores como las de velocidad cero que se basan en la detección de los instantes en los que el pie está apoyado en el suelo. Los resultados han sido obtenidos en entornos interiores usando las posiciones estimadas por un sistema de triangulación basado en la medida de la potencia recibida (RSS) y GPS en exteriores. Finalmente, se han implementado algunas aplicaciones que prueban la utilidad del trabajo desarrollado. En primer lugar se ha considerado una aplicación de monitorización de actividad que proporciona al usuario información sobre el nivel de actividad que realiza durante un período de tiempo. El objetivo final es favorecer el cambio de comportamientos sedentarios, consiguiendo hábitos saludables. Se han desarrollado dos versiones de esta aplicación. En el primer caso se ha integrado el algoritmo de cuenta pasos en una plataforma OSGi móvil adquiriendo los datos de un acelerómetro Bluetooth colocado en el pie. En el segundo caso se ha creado la misma aplicación utilizando las implementaciones de los clasificadores en un dispositivo Android. Por otro lado, se ha planteado el diseño de una aplicación para la creación automática de un diario de viaje a partir de la detección de eventos importantes. Esta aplicación toma como entrada la información procedente de la estimación de actividad y de localización además de información almacenada en bases de datos abiertas (fotos, información sobre sitios) e información sobre sensores reales y virtuales (agenda, cámara, etc.) del móvil. Abstract Inertial sensors (accelerometers and gyroscopes) have been gradually embedded in the devices that people use in their daily lives thanks to their miniaturization. Nowadays all smartphones have at least one embedded magnetometer and accelerometer, containing the most upto- date ones gyroscopes and barometers. This issue, together with the fact that the penetration of smartphones is growing steadily, has made possible the design of systems that rely on the information gathered by wearable sensors (in the future contained in smart textiles) or inertial sensors embedded in a smartphone. The role of these sensors has become key to the development of context-aware and ambient intelligent applications. Some examples are the performance of rehabilitation exercises, the provision of information related to the place that the user is visiting or the interaction with objects by gesture recognition. The work of this thesis contributes to explore to which extent this kind of sensors can be useful to support activity recognition and pedestrian tracking, which have been proven to be essential for these applications. Regarding the recognition of the activity that a user performs, the use of sensors embedded in a smartphone (proximity and light sensors, gyroscopes, magnetometers and accelerometers) has been explored. The activities that are detected belong to the group of the ones known as ‘atomic’ activities (e.g. walking at different paces, running, standing), that is, activities or movements that are part of more complex activities such as doing the dishes or commuting. Simple, wellknown classifiers that can run embedded in a smartphone have been tested, such as Naïve Bayes, Decision Tables and Trees. In addition to this, another aim is to estimate the on-body position in which the user is carrying the mobile phone. The objective is not only to choose a classifier that has been trained with the corresponding data in order to enhance the classification but also to start actions. Finally, the performance of the different classifiers is analysed, taking into consideration different features and number of sensors. The computational and memory load of the classifiers is also measured. On the other hand, an algorithm based on step counting has been proposed. The acceleration information is provided by an accelerometer placed on the foot. The aim is to detect the activity that the user is performing together with the estimation of the distance covered. The step counting strategy is based on detecting minima and its corresponding maxima. Although the counting strategy is not innovative (it includes time windows and amplitude thresholds to prevent under or overestimation) no user-specific information is required. The field of pedestrian tracking is crucial due to the lack of a localization standard for this kind of environments. A loosely-coupled centralized Extended Kalman Filter has been proposed to perform the fusion of inertial and position measurements. Zero velocity updates have been applied whenever the foot is detected to be placed on the ground. The results have been obtained in indoor environments using a triangulation algorithm based on RSS measurements and GPS outdoors. Finally, some applications have been designed to test the usefulness of the work. The first one is called the ‘Activity Monitor’ whose aim is to prevent sedentary behaviours and to modify habits to achieve desired objectives of activity level. Two different versions of the application have been implemented. The first one uses the activity estimation based on the step counting algorithm, which has been integrated in an OSGi mobile framework acquiring the data from a Bluetooth accelerometer placed on the foot of the individual. The second one uses activity classifiers embedded in an Android smartphone. On the other hand, the design of a ‘Travel Logbook’ has been planned. The input of this application is the information provided by the activity and localization modules, external databases (e.g. pictures, points of interest, weather) and mobile embedded and virtual sensors (agenda, camera, etc.). The aim is to detect important events in the journey and gather the information necessary to store it as a journal page.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artículo de síntesis es la transposición de los dos primeros puntos de nuestra memoria de solicitud para la obtención de una de las becas del Fondo IBM del Centro de Cálculo de la Universidad de Madrid en su primera convocatoria (noviembre de 1968). El artículo representa un punto de vista personal sobre relaciones poco conocidas o discutidas entre diferentes aspectos de las teorías de los sistemas cibernéticos. Un año después (diciembre de 1969) el fruto de nuestro trabajo ha sido recogido en. una extensa memoria donde, junto a una presentación de origen bibliográfico, de la teoría de códigos lineales desde un ángulo matemático y en especial de los códigos cíclicos, se publica un conjunto de resultados originales en el campo de la detección y corrección de errores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El trabajo se enmarca dentro de los proyecto INTEGRATE y EURECA, cuyo objetivo es el desarrollo de una capa de interoperabilidad semántica que permita la integración de datos e investigación clínica, proporcionando una plataforma común que pueda ser integrada en diferentes instituciones clínicas y que facilite el intercambio de información entre las mismas. De esta manera se promueve la mejora de la práctica clínica a través de la cooperación entre instituciones de investigación con objetivos comunes. En los proyectos se hace uso de estándares y vocabularios clínicos ya existentes, como pueden ser HL7 o SNOMED, adaptándolos a las necesidades particulares de los datos con los que se trabaja en INTEGRATE y EURECA. Los datos clínicos se representan de manera que cada concepto utilizado sea único, evitando ambigüedades y apoyando la idea de plataforma común. El alumno ha formado parte de un equipo de trabajo perteneciente al Grupo de Informática de la UPM, que a su vez trabaja como uno de los socios de los proyectos europeos nombrados anteriormente. La herramienta desarrollada, tiene como objetivo realizar tareas de homogenización de la información almacenada en las bases de datos de los proyectos haciendo uso de los mecanismos de normalización proporcionados por el vocabulario médico SNOMED-CT. Las bases de datos normalizadas serán las utilizadas para llevar a cabo consultas por medio de servicios proporcionados en la capa de interoperabilidad, ya que contendrán información más precisa y completa que las bases de datos sin normalizar. El trabajo ha sido realizado entre el día 12 de Septiembre del año 2014, donde comienza la etapa de formación y recopilación de información, y el día 5 de Enero del año 2015, en el cuál se termina la redacción de la memoria. El ciclo de vida utilizado ha sido el de desarrollo en cascada, en el que las tareas no comienzan hasta que la etapa inmediatamente anterior haya sido finalizada y validada. Sin embargo, no todas las tareas han seguido este modelo, ya que la realización de la memoria del trabajo se ha llevado a cabo de manera paralela con el resto de tareas. El número total de horas dedicadas al Trabajo de Fin de Grado es 324. Las tareas realizadas y el tiempo de dedicación de cada una de ellas se detallan a continuación:  Formación. Etapa de recopilación de información necesaria para implementar la herramienta y estudio de la misma [30 horas.  Especificación de requisitos. Se documentan los diferentes requisitos que ha de cumplir la herramienta [20 horas].  Diseño. En esta etapa se toman las decisiones de diseño de la herramienta [35 horas].  Implementación. Desarrollo del código de la herramienta [80 horas].  Pruebas. Etapa de validación de la herramienta, tanto de manera independiente como integrada en los proyectos INTEGRATE y EURECA [70 horas].  Depuración. Corrección de errores e introducción de mejoras de la herramienta [45 horas].  Realización de la memoria. Redacción de la memoria final del trabajo [44 horas].---ABSTRACT---This project belongs to the semantic interoperability layer developed in the European projects INTEGRATE and EURECA, which aims to provide a platform to promote interchange of medical information from clinical trials to clinical institutions. Thus, research institutions may cooperate to enhance clinical practice. Different health standards and clinical terminologies has been used in both INTEGRATE and EURECA projects, e.g. HL7 or SNOMED-CT. These tools have been adapted to the projects data requirements. Clinical data are represented by unique concepts, avoiding ambiguity problems. The student has been working in the Biomedical Informatics Group from UPM, partner of the INTEGRATE and EURECA projects. The tool developed aims to perform homogenization tasks over information stored in databases of the project, through normalized representation provided by the SNOMED-CT terminology. The data query is executed against the normalized version of the databases, since the information retrieved will be more informative than non-normalized databases. The project has been performed from September 12th of 2014, when initiation stage began, to January 5th of 2015, when the final report was finished. The waterfall model for software development was followed during the working process. Therefore, a phase may not start before the previous one finishes and has been validated, except from the final report redaction, which has been carried out in parallel with the others phases. The tasks that have been developed and time for each one are detailed as follows:  Training. Gathering the necessary information to develop the tool [30 hours].  Software requirement specification. Requirements the tool must accomplish [20 hours].  Design. Decisions on the design of the tool [35 hours].  Implementation. Tool development [80 hours].  Testing. Tool evaluation within the framework of the INTEGRATE and EURECA projects [70 hours].  Debugging. Improve efficiency and correct errors [45 hours].  Documenting. Final report elaboration [44 hours].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La presente Tesis analiza y desarrolla metodología específica que permite la caracterización de sistemas de transmisión acústicos basados en el fenómeno del array paramétrico. Este tipo de estructuras es considerado como uno de los sistemas más representativos de la acústica no lineal con amplias posibilidades tecnológicas. Los arrays paramétricos aprovechan la no linealidad del medio aéreo para obtener en recepción señales en el margen sónico a partir de señales ultrasónicas en emisión. Por desgracia, este procedimiento implica que la señal transmitida y la recibida guardan una relación compleja, que incluye una fuerte ecualización así como una distorsión apreciable por el oyente. Este hecho reduce claramente la posibilidad de obtener sistemas acústicos de gran fidelidad. Hasta ahora, los esfuerzos tecnológicos dirigidos al diseño de sistemas comerciales han tratado de paliar esta falta de fidelidad mediante técnicas de preprocesado fuertemente dependientes de los modelos físicos teóricos. Estos están basados en la ecuación de propagación de onda no lineal. En esta Tesis se propone un nuevo enfoque: la obtención de una representación completa del sistema mediante series de Volterra que permita inferir un sistema de compensación computacionalmente ligero y fiable. La dificultad que entraña la correcta extracción de esta representación obliga a desarrollar una metodología completa de identificación adaptada a este tipo de estructuras. Así, a la hora de aplicar métodos de identificación se hace indispensable la determinación de ciertas características iniciales que favorezcan la parametrización del sistema. En esta Tesis se propone una metodología propia que extrae estas condiciones iniciales. Con estos datos, nos encontramos en disposición de plantear un sistema completo de identificación no lineal basado en señales pseudoaleatorias, que aumenta la fiabilidad de la descripción del sistema, posibilitando tanto la inferencia de la estructura basada en bloques subyacente, como el diseño de mecanismos de compensación adecuados. A su vez, en este escenario concreto en el que intervienen procesos de modulación, factores como el punto de trabajo o las características físicas del transductor, hacen inviables los algoritmos de caracterización habituales. Incluyendo el método de identificación propuesto. Con el fin de eliminar esta problemática se propone una serie de nuevos algoritmos de corrección que permiten la aplicación de la caracterización. Las capacidades de estos nuevos algoritmos se pondrán a prueba sobre un prototipo físico, diseñado a tal efecto. Para ello, se propondrán la metodología y los mecanismos de instrumentación necesarios para llevar a cabo el diseño, la identificación del sistema y su posible corrección, todo ello mediante técnicas de procesado digital previas al sistema de transducción. Los algoritmos se evaluarán en términos de error de modelado a partir de la señal de salida del sistema real frente a la salida sintetizada a partir del modelo estimado. Esta estrategia asegura la posibilidad de aplicar técnicas de compensación ya que éstas son sensibles a errores de estima en módulo y fase. La calidad del sistema final se evaluará en términos de fase, coloración y distorsión no lineal mediante un test propuesto a lo largo de este discurso, como paso previo a una futura evaluación subjetiva. ABSTRACT This Thesis presents a specific methodology for the characterization of acoustic transmission systems based on the parametric array phenomenon. These structures are well-known representatives of the nonlinear acoustics field and display large technological opportunities. Parametric arrays exploit the nonlinear behavior of air to obtain sonic signals at the receptors’side, which were generated within the ultrasonic range. The underlying physical process redunds in a complex relationship between the transmitted and received signals. This includes both a strong equalization and an appreciable distortion for a human listener. High fidelity, acoustic equipment based on this phenomenon is therefore difficult to design. Until recently, efforts devoted to this enterprise have focused in fidelity enhancement based on physically-informed, pre-processing schemes. These derive directly from the nonlinear form of the wave equation. However, online limited enhancement has been achieved. In this Thesis we propose a novel approach: the evaluation of a complete representation of the system through its projection onto the Volterra series, which allows the posterior inference of a computationally light and reliable compensation scheme. The main difficulty in the derivation of such representation strives from the need of a complete identification methodology, suitable for this particular type of structures. As an example, whenever identification techniques are involved, we require preliminary estimates on certain parameters that contribute to the correct parameterization of the system. In this Thesis we propose a methodology to derive such initial values from simple measures. Once these information is made available, a complete identification scheme is required for nonlinear systems based on pseudorandom signals. These contribute to the robustness and fidelity of the resulting model, and facilitate both the inference of the underlying structure, which we subdivide into a simple block-oriented construction, and the design of the corresponding compensation structure. In a scenario such as this where frequency modulations occur, one must control exogenous factors such as devices’ operation point and the physical properties of the transducer. These may conflict with the principia behind the standard identification procedures, as it is the case. With this idea in mind, the Thesis includes a series of novel correction algorithms that facilitate the application of the characterization results onto the system compensation. The proposed algorithms are tested on a prototype that was designed and built for this purpose. The methodology and instrumentation required for its design, the identification of the overall acoustic system and its correction are all based on signal processing techniques, focusing on the system front-end, i.e. prior to transduction. Results are evaluated in terms of input-output modelling error, considering a synthetic construction of the system. This criterion ensures that compensation techniques may actually be introduced, since these are highly sensible to estimation errors both on the envelope and the phase of the signals involved. Finally, the quality of the overall system will be evaluated in terms of phase, spectral color and nonlinear distortion; by means of a test protocol specifically devised for this Thesis, as a prior step for a future, subjective quality evaluation.