7 resultados para Decision Trees

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining, and in particular decision trees have been used in different fields: engineering, medicine, banking and finance, etc., to analyze a target variable through decision variables. The following article examines the use of the decision trees algorithm as a tool in territorial logistic planning. The decision tree built has estimated population density indexes for territorial units with similar logistics characteristics in a concise and practical way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic blood glucose classification may help specialists to provide a better interpretation of blood glucose data, downloaded directly from patients glucose meter and will contribute in the development of decision support systems for gestational diabetes. This paper presents an automatic blood glucose classifier for gestational diabetes that compares 6 different feature selection methods for two machine learning algorithms: neural networks and decision trees. Three searching algorithms, Greedy, Best First and Genetic, were combined with two different evaluators, CSF and Wrapper, for the feature selection. The study has been made with 6080 blood glucose measurements from 25 patients. Decision trees with a feature set selected with the Wrapper evaluator and the Best first search algorithm obtained the best accuracy: 95.92%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis doctoral se enmarca dentro de la computación con membranas. Se trata de un tipo de computación bio-inspirado, concretamente basado en las células de los organismos vivos, en las que se producen múltiples reacciones de forma simultánea. A partir de la estructura y funcionamiento de las células se han definido diferentes modelos formales, denominados P sistemas. Estos modelos no tratan de modelar el comportamiento biológico de una célula, sino que abstraen sus principios básicos con objeto de encontrar nuevos paradigmas computacionales. Los P sistemas son modelos de computación no deterministas y masivamente paralelos. De ahí el interés que en los últimos años estos modelos han suscitado para la resolución de problemas complejos. En muchos casos, consiguen resolver de forma teórica problemas NP-completos en tiempo polinómico o lineal. Por otra parte, cabe destacar también la aplicación que la computación con membranas ha tenido en la investigación de otros muchos campos, sobre todo relacionados con la biología. Actualmente, una gran cantidad de estos modelos de computación han sido estudiados desde el punto de vista teórico. Sin embargo, el modo en que pueden ser implementados es un reto de investigación todavía abierto. Existen varias líneas en este sentido, basadas en arquitecturas distribuidas o en hardware dedicado, que pretenden acercarse en lo posible a su carácter no determinista y masivamente paralelo, dentro de un contexto de viabilidad y eficiencia. En esta tesis doctoral se propone la realización de un análisis estático del P sistema, como vía para optimizar la ejecución del mismo en estas plataformas. Se pretende que la información recogida en tiempo de análisis sirva para configurar adecuadamente la plataforma donde se vaya a ejecutar posteriormente el P sistema, obteniendo como consecuencia una mejora en el rendimiento. Concretamente, en esta tesis se han tomado como referencia los P sistemas de transiciones para llevar a cabo el estudio de dicho análisis estático. De manera un poco más específica, el análisis estático propuesto en esta tesis persigue que cada membrana sea capaz de determinar sus reglas activas de forma eficiente en cada paso de evolución, es decir, aquellas reglas que reúnen las condiciones adecuadas para poder ser aplicadas. En esta línea, se afronta el problema de los estados de utilidad de una membrana dada, que en tiempo de ejecución permitirán a la misma conocer en todo momento las membranas con las que puede comunicarse, cuestión que determina las reglas que pueden aplicarse en cada momento. Además, el análisis estático propuesto en esta tesis se basa en otra serie de características del P sistema como la estructura de membranas, antecedentes de las reglas, consecuentes de las reglas o prioridades. Una vez obtenida toda esta información en tiempo de análisis, se estructura en forma de árbol de decisión, con objeto de que en tiempo de ejecución la membrana obtenga las reglas activas de la forma más eficiente posible. Por otra parte, en esta tesis se lleva a cabo un recorrido por un número importante de arquitecturas hardware y software que diferentes autores han propuesto para implementar P sistemas. Fundamentalmente, arquitecturas distribuidas, hardware dedicado basado en tarjetas FPGA y plataformas basadas en microcontroladores PIC. El objetivo es proponer soluciones que permitan implantar en dichas arquitecturas los resultados obtenidos del análisis estático (estados de utilidad y árboles de decisión para reglas activas). En líneas generales, se obtienen conclusiones positivas, en el sentido de que dichas optimizaciones se integran adecuadamente en las arquitecturas sin penalizaciones significativas. Summary Membrane computing is the focus of this doctoral thesis. It can be considered a bio-inspired computing type. Specifically, it is based on living cells, in which many reactions take place simultaneously. From cell structure and operation, many different formal models have been defined, named P systems. These models do not try to model the biological behavior of the cell, but they abstract the basic principles of the cell in order to find out new computational paradigms. P systems are non-deterministic and massively parallel computational models. This is why, they have aroused interest when dealing with complex problems nowadays. In many cases, they manage to solve in theory NP problems in polynomial or lineal time. On the other hand, it is important to note that membrane computing has been successfully applied in many researching areas, specially related to biology. Nowadays, lots of these computing models have been sufficiently characterized from a theoretical point of view. However, the way in which they can be implemented is a research challenge, that it is still open nowadays. There are some lines in this way, based on distributed architectures or dedicated hardware. All of them are trying to approach to its non-deterministic and parallel character as much as possible, taking into account viability and efficiency. In this doctoral thesis it is proposed carrying out a static analysis of the P system in order to optimize its performance in a computing platform. The general idea is that after data are collected in analysis time, they are used for getting a suitable configuration of the computing platform in which P system is going to be performed. As a consequence, the system throughput will improve. Specifically, this thesis has made use of Transition P systems for carrying out the study in static analysis. In particular, the static analysis proposed in this doctoral thesis tries to achieve that every membrane can efficiently determine its active rules in every evolution step. These rules are the ones that can be applied depending on the system configuration at each computational step. In this line, we are going to tackle the problem of the usefulness states for a membrane. This state will allow this membrane to know the set of membranes with which communication is possible at any time. This is a very important issue in determining the set of rules that can be applied. Moreover, static analysis in this thesis is carried out taking into account other properties such as membrane structure, rule antecedents, rule consequents and priorities among rules. After collecting all data in analysis time, they are arranged in a decision tree structure, enabling membranes to obtain the set of active rules as efficiently as possible in run-time system. On the other hand, in this doctoral thesis is going to carry out an overview of hardware and software architectures, proposed by different authors in order to implement P systems, such as distributed architectures, dedicated hardware based on PFGA, and computing platforms based on PIC microcontrollers. The aim of this overview is to propose solutions for implementing the results of the static analysis, that is, usefulness states and decision trees for active rules. In general, conclusions are satisfactory, because these optimizations can be properly integrated in most of the architectures without significant penalties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los lenguajes de programación son el idioma que los programadores usamos para comunicar a los computadores qué queremos que hagan. Desde el lenguaje ensamblador, que traduce una a una las instrucciones que interpreta un computador hasta lenguajes de alto nivel, se ha buscado desarrollar lenguajes más cercanos a la forma de pensar y expresarse de los humanos. Los lenguajes de programación lógicos como Prolog utilizan a su vez el lenguaje de la lógica de 1er orden de modo que el programador puede expresar las premisas del problema que se quiere resolver sin preocuparse del cómo se va a resolver dicho problema. La resolución del problema se equipara a encontrar una deducción del objetivo a alcanzar a partir de las premisas y equivale a lo que entendemos por la ejecución de un programa. Ciao es una implementación de Prolog (http://www.ciao-lang.org) y utiliza el método de resolución SLD, que realiza el recorrido de los árboles de decisión en profundidad(depth-first) lo que puede derivar en la ejecución de una rama de busqueda infinita (en un bucle infinito) sin llegar a dar respuestas. Ciao, al ser un sistema modular, permite la utilización de extensiones para implementar estrategias de resolución alternativas como la tabulación (OLDT). La tabulación es un método alternativo que se basa en memorizar las llamadas realizadas y sus respuestas para no repetir llamadas y poder usar las respuestas sin recomputar las llamadas. Algunos programas que con SLD entran en un bucle infinito, gracias a la tabulación dán todas las respuestas y termina. El modulo tabling es una implementación de tabulación mediante el algoritmo CHAT. Esta implementación es una versión beta que no tiene implementado un manejador de memoria. Entendemos que la gestión de memoria en el módulo de tabling tiene gran importancia, dado que la resolución con tabulación permite reducir el tiempo de computación (al no repetir llamadas), aumentando los requerimientos de memoria (para guardar las llamadas y las respuestas). Por lo tanto, el objetivo de este trabajo es implementar un mecanismo de gestión de la memoria en Ciao con el módulo tabling cargado. Para ello se ha realizado la implementación de: Un mecanismo de captura de errores que: detecta cuando el computador se queda sin memoria y activa la reinicialización del sitema. Un procedimiento que ajusta los punteros del modulo de tabling que apuntan a la WAM tras un proceso de realojo de algunas de las áreas de memoria de la WAM. Un gestor de memoria del modulo de tabling que detecta c realizar una ampliación de las áreas de memoria del modulo de tabling, realiza la solicitud de más memoria y realiza el ajuste de los punteros. Para ayudar al lector no familiarizado con este tema, describimos los datos que Ciao y el módulo de tabling alojan en las áreas de memoria dinámicas que queremos gestionar. Los casos de pruebas desarrollados para evaluar la implementación del gestor de memoria, ponen de manifiesto que: Disponer de un gestor de memoria dinámica permite la ejecución de programas en un mayor número de casos. La política de gestión de memoria incide en la velocidad de ejecución de los programas. ---ABSTRACT---Programming languages are the language that programmers use in order to communicate to computers what we want them to do. Starting from the assembly language, which translates one by one the instructions to the computer, and arriving to highly complex languages, programmers have tried to develop programming languages that resemble more closely the way of thinking and communicating of human beings. Logical programming languages, such as Prolog, use the language of logic of the first order so that programmers can express the premise of the problem that they want to solve without having to solve the problem itself. The solution to the problem is equal to finding a deduction of the objective to reach starting from the premises and corresponds to what is usually meant as the execution of a program. Ciao is an implementation of Prolog (http://www.ciao-lang.org) and uses the method of resolution SLD that carries out the path of the decision trees in depth (depth-frist). This can cause the execution of an infinite searching branch (an infinite loop) without getting to an answer. Since Ciao is a modular system, it allows the use of extensions to implement alternative resolution strategies, such as tabulation (OLDT). Tabulation is an alternative method that is based on the memorization of executions and their answers, in order to avoid the repetition of executions and to be able to use the answers without reexecutions. Some programs that get into an infinite loop with SLD are able to give all the answers and to finish thanks to tabulation. The tabling package is an implementation of tabulation through the algorithm CHAT. This implementation is a beta version which does not present a memory handler. The management of memory in the tabling package is highly important, since the solution with tabulation allows to reduce the system time (because it does not repeat executions) and increases the memory requirements (in order to save executions and answers). Therefore, the objective of this work is to implement a memory management mechanism in Ciao with the tabling package loaded. To achieve this goal, the following implementation were made: An error detection system that reveals when the computer is left without memory and activate the reinizialitation of the system. A procedure that adjusts the pointers of the tabling package which points to the WAM after a process of realloc of some of the WAM memory stacks. A memory manager of the tabling package that detects when it is necessary to expand the memory stacks of the tabling package, requests more memory, and adjusts the pointers. In order to help the readers who are not familiar with this topic, we described the data which Ciao and the tabling package host in the dynamic memory stacks that we want to manage. The test cases developed to evaluate the implementation of the memory manager show that: A manager for the dynamic memory allows the execution of programs in a larger number of cases. Memory management policy influences the program execution speed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo principal de esta tesis doctoral es profundizar en el análisis y diseño de un sistema inteligente para la predicción y control del acabado superficial en un proceso de fresado a alta velocidad, basado fundamentalmente en clasificadores Bayesianos, con el prop´osito de desarrollar una metodolog´ıa que facilite el diseño de este tipo de sistemas. El sistema, cuyo propósito es posibilitar la predicción y control de la rugosidad superficial, se compone de un modelo aprendido a partir de datos experimentales con redes Bayesianas, que ayudar´a a comprender los procesos dinámicos involucrados en el mecanizado y las interacciones entre las variables relevantes. Dado que las redes neuronales artificiales son modelos ampliamente utilizados en procesos de corte de materiales, también se incluye un modelo para fresado usándolas, donde se introdujo la geometría y la dureza del material como variables novedosas hasta ahora no estudiadas en este contexto. Por lo tanto, una importante contribución en esta tesis son estos dos modelos para la predicción de la rugosidad superficial, que se comparan con respecto a diferentes aspectos: la influencia de las nuevas variables, los indicadores de evaluación del desempeño, interpretabilidad. Uno de los principales problemas en la modelización con clasificadores Bayesianos es la comprensión de las enormes tablas de probabilidad a posteriori producidas. Introducimos un m´etodo de explicación que genera un conjunto de reglas obtenidas de árboles de decisión. Estos árboles son inducidos a partir de un conjunto de datos simulados generados de las probabilidades a posteriori de la variable clase, calculadas con la red Bayesiana aprendida a partir de un conjunto de datos de entrenamiento. Por último, contribuimos en el campo multiobjetivo en el caso de que algunos de los objetivos no se puedan cuantificar en números reales, sino como funciones en intervalo de valores. Esto ocurre a menudo en aplicaciones de aprendizaje automático, especialmente las basadas en clasificación supervisada. En concreto, se extienden las ideas de dominancia y frontera de Pareto a esta situación. Su aplicación a los estudios de predicción de la rugosidad superficial en el caso de maximizar al mismo tiempo la sensibilidad y la especificidad del clasificador inducido de la red Bayesiana, y no solo maximizar la tasa de clasificación correcta. Los intervalos de estos dos objetivos provienen de un m´etodo de estimación honesta de ambos objetivos, como e.g. validación cruzada en k rodajas o bootstrap.---ABSTRACT---The main objective of this PhD Thesis is to go more deeply into the analysis and design of an intelligent system for surface roughness prediction and control in the end-milling machining process, based fundamentally on Bayesian network classifiers, with the aim of developing a methodology that makes easier the design of this type of systems. The system, whose purpose is to make possible the surface roughness prediction and control, consists of a model learnt from experimental data with the aid of Bayesian networks, that will help to understand the dynamic processes involved in the machining and the interactions among the relevant variables. Since artificial neural networks are models widely used in material cutting proceses, we include also an end-milling model using them, where the geometry and hardness of the piecework are introduced as novel variables not studied so far within this context. Thus, an important contribution in this thesis is these two models for surface roughness prediction, that are then compared with respecto to different aspects: influence of the new variables, performance evaluation metrics, interpretability. One of the main problems with Bayesian classifier-based modelling is the understanding of the enormous posterior probabilitiy tables produced. We introduce an explanation method that generates a set of rules obtained from decision trees. Such trees are induced from a simulated data set generated from the posterior probabilities of the class variable, calculated with the Bayesian network learned from a training data set. Finally, we contribute in the multi-objective field in the case that some of the objectives cannot be quantified as real numbers but as interval-valued functions. This often occurs in machine learning applications, especially those based on supervised classification. Specifically, the dominance and Pareto front ideas are extended to this setting. Its application to the surface roughness prediction studies the case of maximizing simultaneously the sensitivity and specificity of the induced Bayesian network classifier, rather than only maximizing the correct classification rate. Intervals in these two objectives come from a honest estimation method of both objectives, like e.g. k-fold cross-validation or bootstrap.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La seguridad y fiabilidad de los procesos industriales son la principal preocupación de los ingenieros encargados de las plantas industriales. Por lo tanto, desde un punto de vista económico, el objetivo principal es reducir el costo del mantenimiento, el tiempo de inactividad y las pérdidas causadas por los fallos. Por otra parte, la seguridad de los operadores, que afecta a los aspectos sociales y económicos, es el factor más relevante a considerar en cualquier sistema Debido a esto, el diagnóstico de fallos se ha convertido en un foco importante de interés para los investigadores de todo el mundo e ingenieros en la industria. Los principales trabajos enfocados en detección de fallos se basan en modelos de los procesos. Existen diferentes técnicas para el modelado de procesos industriales tales como máquinas de estado, árboles de decisión y Redes de Petri (RdP). Por lo tanto, esta tesis se centra en el modelado de procesos utilizando redes de petri interpretadas. Redes de Petri es una herramienta usada en el modelado gráfico y matemático con la habilidad para describir información de los sistemas de una manera concurrente, paralela, asincrona, distribuida y no determinística o estocástica. RdP son también una herramienta de comunicación visual gráfica útil como lo son las cartas de flujo o diagramas de bloques. Adicionalmente, las marcas de las RdP simulan la dinámica y concurrencia de los sistemas. Finalmente, ellas tienen la capacidad de definir ecuaciones de estado específicas, ecuaciones algebraicas y otros modelos que representan el comportamiento común de los sistemas. Entre los diferentes tipos de redes de petri (Interpretadas, Coloreadas, etc.), este trabajo de investigación trata con redes de petri interpretadas principalmente debido a características tales como sincronización, lugares temporizados, aparte de su capacidad para procesamiento de datos. Esta investigación comienza con el proceso para diseñar y construir el modelo y diagnosticador para detectar fallos definitivos, posteriormente, la dinámica temporal fue adicionada para detectar fallos intermitentes. Dos procesos industriales, concretamente un HVAC (Calefacción, Ventilación y Aire Acondicionado) y un Proceso de Envasado de Líquidos fueron usados como banco de pruebas para implementar la herramienta de diagnóstico de fallos (FD) creada. Finalmente, su capacidad de diagnóstico fue ampliada en orden a detectar fallos en sistemas híbridos. Finalmente, un pequeño helicóptero no tripulado fue elegido como ejemplo de sistema donde la seguridad es un desafío, y las técnicas de detección de fallos desarrolladas en esta tesis llevan a ser una herramienta valorada, desde que los accidentes de las aeronaves no tripuladas (UAVs) envuelven un alto costo económico y son la principal razón para introducir restricciones de volar sobre áreas pobladas. Así, este trabajo introduce un proceso sistemático para construir un Diagnosticador de Fallos del sistema mencionado basado en RdR Esta novedosa herramienta es capaz de detectar fallos definitivos e intermitentes. El trabajo realizado es discutido desde un punto de vista teórico y práctico. El procedimiento comienza con la división del sistema en subsistemas para seguido integrar en una RdP diagnosticadora global que es capaz de monitorear el sistema completo y mostrar las variables críticas al operador en orden a determinar la salud del UAV, para de esta manera prevenir accidentes. Un Sistema de Adquisición de Datos (DAQ) ha sido también diseñado para recoger datos durante los vuelos y alimentar la RdP diagnosticadora. Vuelos reales realizados bajo condiciones normales y de fallo han sido requeridos para llevar a cabo la configuración del diagnosticador y verificar su comportamiento. Vale la pena señalar que un alto riesgo fue asumido en la generación de fallos durante los vuelos, a pesar de eso esto permitió recoger datos básicos para desarrollar el diagnóstico de fallos, técnicas de aislamiento, protocolos de mantenimiento, modelos de comportamiento, etc. Finalmente, un resumen de la validación de resultados obtenidos durante las pruebas de vuelo es también incluido. Un extensivo uso de esta herramienta mejorará los protocolos de mantenimiento para UAVs (especialmente helicópteros) y permite establecer recomendaciones en regulaciones. El uso del diagnosticador usando redes de petri es considerado un novedoso enfoque. ABSTRACT Safety and reliability of industrial processes are the main concern of the engineers in charge of industrial plants. Thus, from an economic point of view, the main goal is to reduce the maintenance downtime cost and the losses caused by failures. Moreover, the safety of the operators, which affects to social and economic aspects, is the most relevant factor to consider in any system. Due to this, fault diagnosis has become a relevant focus of interest for worldwide researchers and engineers in the industry. The main works focused on failure detection are based on models of the processes. There are different techniques for modelling industrial processes such as state machines, decision trees and Petri Nets (PN). Thus, this Thesis is focused on modelling processes by using Interpreted Petri Nets. Petri Nets is a tool used in the graphic and mathematical modelling with ability to describe information of the systems in a concurrent, parallel, asynchronous, distributed and not deterministic or stochastic manner. PNs are also useful graphical visual communication tools as flow chart or block diagram. Additionally, the marks of the PN simulate the dynamics and concurrence of the systems. Finally, they are able to define specific state equations, algebraic equations and other models that represent the common behaviour of systems. Among the different types of PN (Interpreted, Coloured, etc.), this research work deals with the interpreted Petri Nets mainly due to features such as synchronization capabilities, timed places, apart from their capability for processing data. This Research begins with the process for designing and building the model and diagnoser to detect permanent faults, subsequently, the temporal dynamic was added for detecting intermittent faults. Two industrial processes, namely HVAC (Heating, Ventilation and Air Condition) and Liquids Packaging Process were used as testbed for implementing the Fault Diagnosis (FD) tool created. Finally, its diagnostic capability was enhanced in order to detect faults in hybrid systems. Finally, a small unmanned helicopter was chosen as example of system where safety is a challenge and fault detection techniques developed in this Thesis turn out to be a valuable tool since UAVs accidents involve high economic cost and are the main reason for setting restrictions to fly over populated areas. Thus, this work introduces a systematic process for building a Fault Diagnoser of the mentioned system based on Petri Nets. This novel tool is able to detect both intermittent and permanent faults. The work carried out is discussed from theoretical and practical point of view. The procedure begins with a division of the system into subsystems for further integration into a global PN diagnoser that is able to monitor the whole system and show critical variables to the operator in order to determine the UAV health, preventing accidents in this manner. A Data Acquisition System (DAQ) has been also designed for collecting data during the flights and feed PN Diagnoser. Real flights carried out under nominal and failure conditions have been required to perform the diagnoser setup and verify its performance. It is worth noting that a high risk was assumed in the generation of faults during the flights, nevertheless this allowed collecting basic data so as to develop fault diagnosis, isolations techniques, maintenance protocols, behaviour models, etc. Finally, a summary of the validation results obtained during real flight tests is also included. An extensive use of this tool will improve preventive maintenance protocols for UAVs (especially helicopters) and allow establishing recommendations in regulations. The use of the diagnoser by using Petri Nets is considered as novel approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis presenta el diseño y la aplicación de una metodología que permite la determinación de los parámetros para la planificación de nodos e infraestructuras logísticas en un territorio, considerando además el impacto de estas en los diferentes componentes territoriales, así como en el desarrollo poblacional, el desarrollo económico y el medio ambiente, presentando así un avance en la planificación integral del territorio. La Metodología propuesta está basada en Minería de Datos, que permite el descubrimiento de patrones detrás de grandes volúmenes de datos previamente procesados. Las características propias de los datos sobre el territorio y los componentes que lo conforman hacen de los estudios territoriales un campo ideal para la aplicación de algunas de las técnicas de Minería de Datos, tales como los ´arboles decisión y las redes bayesianas. Los árboles de decisión permiten representar y categorizar de forma esquemática una serie de variables de predicción que ayudan al análisis de una variable objetivo. Las redes bayesianas representan en un grafo acíclico dirigido, un modelo probabilístico de variables distribuidas en padres e hijos, y la inferencia estadística que permite determinar la probabilidad de certeza de una hipótesis planteada, es decir, permiten construir modelos de probabilidad conjunta que presentan de manera gráfica las dependencias relevantes en un conjunto de datos. Al igual que con los árboles de decisión, la división del territorio en diferentes unidades administrativas hace de las redes bayesianas una herramienta potencial para definir las características físicas de alguna tipología especifica de infraestructura logística tomando en consideración las características territoriales, poblacionales y económicas del área donde se plantea su desarrollo y las posibles sinergias que se puedan presentar sobre otros nodos e infraestructuras logísticas. El caso de estudio seleccionado para la aplicación de la metodología ha sido la República de Panamá, considerando que este país presenta algunas características singulares, entra las que destacan su alta concentración de población en la Ciudad de Panamá; que a su vez a concentrado la actividad económica del país; su alto porcentaje de zonas protegidas, lo que ha limitado la vertebración del territorio; y el Canal de Panamá y los puertos de contenedores adyacentes al mismo. La metodología se divide en tres fases principales: Fase 1: Determinación del escenario de trabajo 1. Revisión del estado del arte. 2. Determinación y obtención de las variables de estudio. Fase 2: Desarrollo del modelo de inteligencia artificial 3. Construcción de los ´arboles de decisión. 4. Construcción de las redes bayesianas. Fase 3: Conclusiones 5. Determinación de las conclusiones. Con relación al modelo de planificación aplicado al caso de estudio, una vez aplicada la metodología, se estableció un modelo compuesto por 47 variables que definen la planificación logística de Panamá, el resto de variables se definen a partir de estas, es decir, conocidas estas, el resto se definen a través de ellas. Este modelo de planificación establecido a través de la red bayesiana considera los aspectos de una planificación sostenible: económica, social y ambiental; que crean sinergia con la planificación de nodos e infraestructuras logísticas. The thesis presents the design and application of a methodology that allows the determination of parameters for the planning of nodes and logistics infrastructure in a territory, besides considering the impact of these different territorial components, as well as the population growth, economic and environmental development. The proposed methodology is based on Data Mining, which allows the discovery of patterns behind large volumes of previously processed data. The own characteristics of the territorial data makes of territorial studies an ideal field of knowledge for the implementation of some of the Data Mining techniques, such as Decision Trees and Bayesian Networks. Decision trees categorize schematically a series of predictor variables of an analyzed objective variable. Bayesian Networks represent a directed acyclic graph, a probabilistic model of variables divided in fathers and sons, and statistical inference that allow determine the probability of certainty in a hypothesis. The case of study for the application of the methodology is the Republic of Panama. This country has some unique features: a high population density in the Panama City, a concentration of economic activity, a high percentage of protected areas, and the Panama Canal. The methodology is divided into three main phases: Phase 1: definition of the work stage. 1. Review of the State of the art. 2. Determination of the variables. Phase 2: Development of artificial intelligence model 3. Construction of decision trees. 4. Construction of Bayesian Networks. Phase 3: conclusions 5. Determination of the conclusions. The application of the methodology to the case study established a model composed of 47 variables that define the logistics planning for Panama. This model of planning established through the Bayesian network considers aspects of sustainable planning and simulates the synergies between the nodes and logistical infrastructure planning.