17 resultados para Decision Quality

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A land classification method was designed for the Community of Madrid (CM), which has lands suitable for either agriculture use or natural spaces. The process started from an extensive previous CM study that contains sets of land attributes with data for 122 types and a minimum-requirements method providing a land quality classification (SQ) for each land. Borrowing some tools from Operations Research (OR) and from Decision Science, that SQ has been complemented by an additive valuation method that involves a more restricted set of 13 representative attributes analysed using Attribute Valuation Functions to obtain a quality index, QI, and by an original composite method that uses a fuzzy set procedure to obtain a combined quality index, CQI, that contains relevant information from both the SQ and the QI methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of minimally processed vegetables and fruits is an emergent sector, however these processes reduce the useful life of the products. Main preservation techniques such cold storage and modified atmosphere are limited. New treatments are being applied (O3 , UV‐C radiation, biodegradable films…etc.). The sector precise of cheap and fast techniques to evaluate the general quality and the security of the processed products, that constitute a tool of aid to the decision in the implementation of new procedures of packaging and/or treatments. Objectives: To explore hyperspectral imaging for monitoring the evolution of minimally processed leafy vegetables during shelf‐life . To identify and classify deterioration rates of the leaves through Multivariate analysis techniques (PLS‐DA)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider a scenario where 3D scenes are modeled through a View+Depth representation. This representation is to be used at the rendering side to generate synthetic views for free viewpoint video. The encoding of both type of data (view and depth) is carried out using two H.264/AVC encoders. In this scenario we address the reduction of the encoding complexity of depth data. Firstly, an analysis of the Mode Decision and Motion Estimation processes has been conducted for both view and depth sequences, in order to capture the correlation between them. Taking advantage of this correlation, we propose a fast mode decision and motion estimation algorithm for the depth encoding. Results show that the proposed algorithm reduces the computational burden with a negligible loss in terms of quality of the rendered synthetic views. Quality measurements have been conducted using the Video Quality Metric.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper empirically evaluates container terminal service attributes. The methodology proposed focuses on statistical control. Based on the concept of service segmentation, the authors employed control charts to classify container terminal services. The purpose of control charts is to allow simple detection of events that are indicative of actual process change. This simple decision can be difficult where the process characteristic is continuously varying, the control chart provides statistically objective criteria of change. When change is detected and considered good its cause should be identified and possibly become the new way of working, where the change is bad then its cause should be identified and eliminated. Both theoretical and practical implications of the research findings are discussed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper empirically evaluates container terminal service attributes. The methodology proposed focuses on statistical control. Based on the concept of service segmentation, we employed control charts to classify container terminal services. The purpose of control charts is to allow simple detection of events that are indicative of actual process change. This simple decision can be difficult where the process characteristic is continuously varying; the control chart provides statistically objective criteria of change. When change is detected and considered good its cause should be identified and possibly become the new way of working, where the change is bad then its cause should be identified and eliminated. This paper is organized as follows: Section 1 is the introduction, Section 2 provides a brief note on other studies that inspired this research, section 3 focuses on the methodology used, and develops the results obtained and finally conclusions are shown in Section 4. Theoretical and practical implications of the research findings are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many industries that use highly technological solutions to improve quality in all of their products. The steel industry is one example. Several automatic surface-inspection systems are used in the steel industry to identify various types of defects and to help operators decide whether to accept, reroute, or downgrade the material, subject to the assessment process. This paper focuses on promoting a strategy that considers all defects in an integrated fashion. It does this by managing the uncertainty about the exact position of a defect due to different process conditions by means of Gaussian additive influence functions. The relevance of the approach is in making possible consistency and reliability between surface inspection systems. The results obtained are an increase in confidence in the automatic inspection system and an ability to introduce improved prediction and advanced routing models. The prediction is provided to technical operators to help them in their decision-making process. It shows the increase in improvement gained by reducing the 40 % of coils that are downgraded at the hot strip mill because of specific defects. In addition, this technology facilitates an increase of 50 % in the accuracy of the estimate of defect survival after the cleaning facility in comparison to the former approach. The proposed technology is implemented by means of software-based, multi-agent solutions. It makes possible the independent treatment of information, presentation, quality analysis, and other relevant functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to examine the effect of positioning on the correctness of decision making of top-class referees and assistant referees during international games. Match analyses were carried out during the Fe´de´ration Internationale de Football Association (FIFA) Confederations Cup 2009 and 380 foul play incidents and 165 offside situations were examined. The error percentage for the referees when indicating the incidents averaged 14%. The lowest error percentage occurred in the central area of the field, where the collaboration of the assistant referee is limited, and was achieved when indicating the incidents from a distance of 11–15 m, whereas this percentage peaked (23%) in the last 15-min match period. The error rate for the assistant referees was 13%. Distance of the assistant referee to the offside line did not have an impact on the quality of the offside decision. The risk of making incorrect decisions was reduced when the assistant referees viewed the offside situations from an angle between 46 and 608. Incorrect offside decisions occurred twice as often in the second as in the first half of the games. Perceptual-cognitive training sessions specific to the requirements of the game should be implemented in the weekly schedule of football officials to reduce the overall error rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he inclusion of environmental care data in the decision-making process should be based on the results obtained after scienti?cally evaluating different environmental variables. Herein, a European landscape geographic model is presented. This landscape map would allow the environmental care variable ?visual landscape?, along with other information related to vegetation, geology, soils, cultural variables, etc., to be integrated into the planning process. The methodology used is not new since it has already been tested in Spain by the authors. Nevertheless, the model was adapted to cope with the much more extensive territory of the European Union. This meant dealing with computational dif?culties, and a lack of information. The result of this work is a raster map (100 m cell size) that evaluates landscape quality in Europe by dividing the area into seven visual quality classes. This is a practical tool for territorial development that will facilitate the environmental assessment of plans, such as infrastructure plans, within a strategic pan-European framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing awareness among all kinds of organisations (in business,government and civil society) about the benefits of jointly working with stakeholders to satisfy both their goals and the social demands placed upon them. This is particularly the case within corporate social responsibility (CSR) frameworks. In this regard, multi-criteria tools for decision-making like the analytic hierarchy process (AHP) described in the paper can be useful for the building relationships with stakeholders. Since these tools can reveal decision-maker’s preferences, the integration of opinions from various stakeholders in the decision-making process may result in better and more innovative solutions with significant shared value. This paper is based on ongoing research to assess the feasibility of an AHP-based model to support CSR decisions in large infrastructure projects carried out by Red Electrica de España, the sole transmission agent and operator of the Spanishelectricity system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demostrated using experimental data obtained on osmotic dehydratation of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM), were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major challenges in evolutionary robotics is constituted by the need of the robot being able to make decisions on its own, in accordance with the multiple tasks programmed, optimizing its timings and power. In this paper, we present a new automatic decision making mechanism for a robot guide that allows the robot to make the best choice in order to reach its aims, performing its tasks in an optimal way. The election of which is the best alternative is based on a series of criteria and restrictions of the tasks to perform. The software developed in the project has been verified on the tour-guide robot Urbano. The most important aspect of this proposal is that the design uses learning as the means to optimize the quality in the decision making. The modeling of the quality index of the best choice to perform is made using fuzzy logic and it represents the beliefs of the robot, which continue to evolve in order to match the "external reality”. This fuzzy system is used to select the most appropriate set of tasks to perform during the day. With this tool, the tour guide-robot prepares its agenda daily, which satisfies the objectives and restrictions, and it identifies the best task to perform at each moment. This work is part of the ARABOT project of the Intelligent Control Research Group at the Universidad Politécnica de Madrid to create "awareness" in a robot guide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tradicionalmente, el uso de técnicas de análisis de datos ha sido una de las principales vías para el descubrimiento de conocimiento oculto en grandes cantidades de datos, recopilados por expertos en diferentes dominios. Por otra parte, las técnicas de visualización también se han usado para mejorar y facilitar este proceso. Sin embargo, existen limitaciones serias en la obtención de conocimiento, ya que suele ser un proceso lento, tedioso y en muchas ocasiones infructífero, debido a la dificultad de las personas para comprender conjuntos de datos de grandes dimensiones. Otro gran inconveniente, pocas veces tenido en cuenta por los expertos que analizan grandes conjuntos de datos, es la degradación involuntaria a la que someten a los datos durante las tareas de análisis, previas a la obtención final de conclusiones. Por degradación quiere decirse que los datos pueden perder sus propiedades originales, y suele producirse por una reducción inapropiada de los datos, alterando así su naturaleza original y llevando en muchos casos a interpretaciones y conclusiones erróneas que podrían tener serias implicaciones. Además, este hecho adquiere una importancia trascendental cuando los datos pertenecen al dominio médico o biológico, y la vida de diferentes personas depende de esta toma final de decisiones, en algunas ocasiones llevada a cabo de forma inapropiada. Ésta es la motivación de la presente tesis, la cual propone un nuevo framework visual, llamado MedVir, que combina la potencia de técnicas avanzadas de visualización y minería de datos para tratar de dar solución a estos grandes inconvenientes existentes en el proceso de descubrimiento de información válida. El objetivo principal es hacer más fácil, comprensible, intuitivo y rápido el proceso de adquisición de conocimiento al que se enfrentan los expertos cuando trabajan con grandes conjuntos de datos en diferentes dominios. Para ello, en primer lugar, se lleva a cabo una fuerte disminución en el tamaño de los datos con el objetivo de facilitar al experto su manejo, y a la vez preservando intactas, en la medida de lo posible, sus propiedades originales. Después, se hace uso de efectivas técnicas de visualización para representar los datos obtenidos, permitiendo al experto interactuar de forma sencilla e intuitiva con los datos, llevar a cabo diferentes tareas de análisis de datos y así estimular visualmente su capacidad de comprensión. De este modo, el objetivo subyacente se basa en abstraer al experto, en la medida de lo posible, de la complejidad de sus datos originales para presentarle una versión más comprensible, que facilite y acelere la tarea final de descubrimiento de conocimiento. MedVir se ha aplicado satisfactoriamente, entre otros, al campo de la magnetoencefalografía (MEG), que consiste en la predicción en la rehabilitación de lesiones cerebrales traumáticas (Traumatic Brain Injury (TBI) rehabilitation prediction). Los resultados obtenidos demuestran la efectividad del framework a la hora de acelerar y facilitar el proceso de descubrimiento de conocimiento sobre conjuntos de datos reales. ABSTRACT Traditionally, the use of data analysis techniques has been one of the main ways of discovering knowledge hidden in large amounts of data, collected by experts in different domains. Moreover, visualization techniques have also been used to enhance and facilitate this process. However, there are serious limitations in the process of knowledge acquisition, as it is often a slow, tedious and many times fruitless process, due to the difficulty for human beings to understand large datasets. Another major drawback, rarely considered by experts that analyze large datasets, is the involuntary degradation to which they subject the data during analysis tasks, prior to obtaining the final conclusions. Degradation means that data can lose part of their original properties, and it is usually caused by improper data reduction, thereby altering their original nature and often leading to erroneous interpretations and conclusions that could have serious implications. Furthermore, this fact gains a trascendental importance when the data belong to medical or biological domain, and the lives of people depends on the final decision-making, which is sometimes conducted improperly. This is the motivation of this thesis, which proposes a new visual framework, called MedVir, which combines the power of advanced visualization techniques and data mining to try to solve these major problems existing in the process of discovery of valid information. Thus, the main objective is to facilitate and to make more understandable, intuitive and fast the process of knowledge acquisition that experts face when working with large datasets in different domains. To achieve this, first, a strong reduction in the size of the data is carried out in order to make the management of the data easier to the expert, while preserving intact, as far as possible, the original properties of the data. Then, effective visualization techniques are used to represent the obtained data, allowing the expert to interact easily and intuitively with the data, to carry out different data analysis tasks, and so visually stimulating their comprehension capacity. Therefore, the underlying objective is based on abstracting the expert, as far as possible, from the complexity of the original data to present him a more understandable version, thus facilitating and accelerating the task of knowledge discovery. MedVir has been succesfully applied to, among others, the field of magnetoencephalography (MEG), which consists in predicting the rehabilitation of Traumatic Brain Injury (TBI). The results obtained successfully demonstrate the effectiveness of the framework to accelerate and facilitate the process of knowledge discovery on real world datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Shopping centre is a long term investment in which Greenfield development decisions are often taken based on risks analysis regarding construction costs, location, competition, market and an expected DCF. Furthermore, integration between the building design, project planning, operational costs and investment analysis is not entirely considered by the investor at the decision making stage. The absence of such information tends to produce certain negative impacts on the future running costs and annual maintenance of the building, especially on energy demand and other occupancy expenses paid by the tenants to the landlord. From the investor´s point of view, this blind spot in strategy development will possibly decrease their profit margin as changes in the occupancy expenses[ ] have a direct outcome on the profit margin. In order to try to reduce some higher operating cost components such as energy use and other utility savings as well as their CO2 emissions, quite a few income properties worldwide have some type of environmental label such as BREEAM and LEED. The drawback identified in this labelling is that usually the investments required to get an ecolabel are high and the investor finds no direct evidence that it increases market value. However there is research on certified commercial properties (especially offices) that shows better performance in terms of occupancy rate and rental cost (Warren-Myers, 2012). Additionally, Sayce (2013) says that the certification only provides a quick reference point i.e. the lack of a certificate does not indicate that a building is not sustainable or efficient. Based on the issues described above, this research compares important components of the development stages such as investments costs, concept/ strategy development as well as the current investor income and property value. The subjects for this analysis are a shopping centre designed with passive cooling/bioclimatic strategies evaluated at the decision making stage, a certified regional shopping centre and a non-certified standard regional shopping centre. Moreover, the proposal intends to provide decision makers with some tools for linking green design features to the investment analysis in order to optimize the decision making process when looking into cost savings and design quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To achieve sustainability in the area of transport we need to view the decision-making process as a whole and consider all the most important socio-economic and environmental aspects involved. Improvements in transport infrastructures have a positive impact on regional development and significant repercussions on the economy, as well as affecting a large number of ecological processes. This article presents a DSS to assess the territorial effects of new linear transport infrastructures based on the use of GIS. The TITIM ? Transport Infrastructure Territorial Impact Measurement ? GIS tool allows these effects to be calculated by evaluating the improvement in accessibility, loss of landscape connectivity, and the impact on other local territorial variables such as landscape quality, biodiversity and land-use quality. The TITIM GIS tool assesses these variables automatically, simply by entering the required inputs, and thus avoiding the manual reiteration and execution of these multiple processes. TITIM allows researchers to use their own GIS databases as inputs, in contrast with other tools that use official or predefined maps. The TITIM GIS-tool is tested by application to six HSR projects in the Spanish Strategic Transport and Infrastructure Plan 2005?2020 (PEIT). The tool creates all 65 possible combinations of these projects, which will be the real test scenarios. For each one, the tool calculates the accessibility improvement, the landscape connectivity loss, and the impact on the landscape, biodiversity and land-use quality. The results reveal which of the HSR projects causes the greatest benefit to the transport system, any potential synergies that exist, and help define a priority for implementing the infrastructures in the plan

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La mejora de la calidad del aire es una tarea eminentemente interdisciplinaria. Dada la gran variedad de ciencias y partes involucradas, dicha mejora requiere de herramientas de evaluación simples y completamente integradas. La modelización para la evaluación integrada (integrated assessment modeling) ha demostrado ser una solución adecuada para la descripción de los sistemas de contaminación atmosférica puesto que considera cada una de las etapas involucradas: emisiones, química y dispersión atmosférica, impactos ambientales asociados y potencial de disminución. Varios modelos de evaluación integrada ya están disponibles a escala continental, cubriendo cada una de las etapas antesmencionadas, siendo el modelo GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) el más reconocido y usado en el contexto europeo de toma de decisiones medioambientales. Sin embargo, el manejo de la calidad del aire a escala nacional/regional dentro del marco de la evaluación integrada es deseable. Esto sin embargo, no se lleva a cabo de manera satisfactoria con modelos a escala europea debido a la falta de resolución espacial o de detalle en los datos auxiliares, principalmente los inventarios de emisión y los patrones meteorológicos, entre otros. El objetivo de esta tesis es presentar los desarrollos en el diseño y aplicación de un modelo de evaluación integrada especialmente concebido para España y Portugal. El modelo AERIS (Atmospheric Evaluation and Research Integrated system for Spain) es capaz de cuantificar perfiles de concentración para varios contaminantes (NO2, SO2, PM10, PM2,5, NH3 y O3), el depósito atmosférico de especies de azufre y nitrógeno así como sus impactos en cultivos, vegetación, ecosistemas y salud como respuesta a cambios porcentuales en las emisiones de sectores relevantes. La versión actual de AERIS considera 20 sectores de emisión, ya sea equivalentes a sectores individuales SNAP o macrosectores, cuya contribución a los niveles de calidad del aire, depósito e impactos han sido modelados a través de matrices fuentereceptor (SRMs). Estas matrices son constantes de proporcionalidad que relacionan cambios en emisiones con diferentes indicadores de calidad del aire y han sido obtenidas a través de parametrizaciones estadísticas de un modelo de calidad del aire (AQM). Para el caso concreto de AERIS, su modelo de calidad del aire “de origen” consistió en el modelo WRF para la meteorología y en el modelo CMAQ para los procesos químico-atmosféricos. La cuantificación del depósito atmosférico, de los impactos en ecosistemas, cultivos, vegetación y salud humana se ha realizado siguiendo las metodologías estándar establecidas bajo los marcos internacionales de negociación, tales como CLRTAP. La estructura de programación está basada en MATLAB®, permitiendo gran compatibilidad con software típico de escritorio comoMicrosoft Excel® o ArcGIS®. En relación con los niveles de calidad del aire, AERIS es capaz de proveer datos de media anual y media mensual, así como el 19o valor horario más alto paraNO2, el 25o valor horario y el 4o valor diario más altos para SO2, el 36o valor diario más alto para PM10, el 26o valor octohorario más alto, SOMO35 y AOT40 para O3. En relación al depósito atmosférico, el depósito acumulado anual por unidad de area de especies de nitrógeno oxidado y reducido al igual que de azufre pueden ser determinados. Cuando los valores anteriormente mencionados se relacionan con características del dominio modelado tales como uso de suelo, cubiertas vegetales y forestales, censos poblacionales o estudios epidemiológicos, un gran número de impactos puede ser calculado. Centrándose en los impactos a ecosistemas y suelos, AERIS es capaz de estimar las superaciones de cargas críticas y las superaciones medias acumuladas para especies de nitrógeno y azufre. Los daños a bosques se calculan como una superación de los niveles críticos de NO2 y SO2 establecidos. Además, AERIS es capaz de cuantificar daños causados por O3 y SO2 en vid, maíz, patata, arroz, girasol, tabaco, tomate, sandía y trigo. Los impactos en salud humana han sido modelados como consecuencia de la exposición a PM2,5 y O3 y cuantificados como pérdidas en la esperanza de vida estadística e indicadores de mortalidad prematura. La exactitud del modelo de evaluación integrada ha sido contrastada estadísticamente con los resultados obtenidos por el modelo de calidad del aire convencional, exhibiendo en la mayoría de los casos un buen nivel de correspondencia. Debido a que la cuantificación de los impactos no es llevada a cabo directamente por el modelo de calidad del aire, un análisis de credibilidad ha sido realizado mediante la comparación de los resultados de AERIS con los de GAINS para un escenario de emisiones determinado. El análisis reveló un buen nivel de correspondencia en las medias y en las distribuciones probabilísticas de los conjuntos de datos. Las pruebas de verificación que fueron aplicadas a AERIS sugieren que los resultados son suficientemente consistentes para ser considerados como razonables y realistas. En conclusión, la principal motivación para la creación del modelo fue el producir una herramienta confiable y a la vez simple para el soporte de las partes involucradas en la toma de decisiones, de cara a analizar diferentes escenarios “y si” con un bajo coste computacional. La interacción con políticos y otros actores dictó encontrar un compromiso entre la complejidad del modeladomedioambiental con el carácter conciso de las políticas, siendo esto algo que AERIS refleja en sus estructuras conceptual y computacional. Finalmente, cabe decir que AERIS ha sido creado para su uso exclusivo dentro de un marco de evaluación y de ninguna manera debe ser considerado como un sustituto de los modelos de calidad del aire ordinarios. ABSTRACT Improving air quality is an eminently inter-disciplinary task. The wide variety of sciences and stakeholders that are involved call for having simple yet fully-integrated and reliable evaluation tools available. Integrated AssessmentModeling has proved to be a suitable solution for the description of air pollution systems due to the fact that it considers each of the involved stages: emissions, atmospheric chemistry, dispersion, environmental impacts and abatement potentials. Some integrated assessment models are available at European scale that cover each of the before mentioned stages, being the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model the most recognized and widely-used within a European policy-making context. However, addressing air quality at the national/regional scale under an integrated assessment framework is desirable. To do so, European-scale models do not provide enough spatial resolution or detail in their ancillary data sources, mainly emission inventories and local meteorology patterns as well as associated results. The objective of this dissertation is to present the developments in the design and application of an Integrated Assessment Model especially conceived for Spain and Portugal. The Atmospheric Evaluation and Research Integrated system for Spain (AERIS) is able to quantify concentration profiles for several pollutants (NO2, SO2, PM10, PM2.5, NH3 and O3), the atmospheric deposition of sulfur and nitrogen species and their related impacts on crops, vegetation, ecosystems and health as a response to percentual changes in the emissions of relevant sectors. The current version of AERIS considers 20 emission sectors, either corresponding to individual SNAP sectors or macrosectors, whose contribution to air quality levels, deposition and impacts have been modeled through the use of source-receptor matrices (SRMs). Thesematrices are proportionality constants that relate emission changes with different air quality indicators and have been derived through statistical parameterizations of an air qualitymodeling system (AQM). For the concrete case of AERIS, its parent AQM relied on the WRF model for meteorology and on the CMAQ model for atmospheric chemical processes. The quantification of atmospheric deposition, impacts on ecosystems, crops, vegetation and human health has been carried out following the standard methodologies established under international negotiation frameworks such as CLRTAP. The programming structure isMATLAB ® -based, allowing great compatibility with typical software such as Microsoft Excel ® or ArcGIS ® Regarding air quality levels, AERIS is able to provide mean annual andmean monthly concentration values, as well as the indicators established in Directive 2008/50/EC, namely the 19th highest hourly value for NO2, the 25th highest daily value and the 4th highest hourly value for SO2, the 36th highest daily value of PM10, the 26th highest maximum 8-hour daily value, SOMO35 and AOT40 for O3. Regarding atmospheric deposition, the annual accumulated deposition per unit of area of species of oxidized and reduced nitrogen as well as sulfur can be estimated. When relating the before mentioned values with specific characteristics of the modeling domain such as land use, forest and crops covers, population counts and epidemiological studies, a wide array of impacts can be calculated. When focusing on impacts on ecosystems and soils, AERIS is able to estimate critical load exceedances and accumulated average exceedances for nitrogen and sulfur species. Damage on forests is estimated as an exceedance of established critical levels of NO2 and SO2. Additionally, AERIS is able to quantify damage caused by O3 and SO2 on grapes, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat. Impacts on human health aremodeled as a consequence of exposure to PM2.5 and O3 and quantified as losses in statistical life expectancy and premature mortality indicators. The accuracy of the IAM has been tested by statistically contrasting the obtained results with those yielded by the conventional AQM, exhibiting in most cases a good agreement level. Due to the fact that impacts cannot be directly produced by the AQM, a credibility analysis was carried out for the outputs of AERIS for a given emission scenario by comparing them through probability tests against the performance of GAINS for the same scenario. This analysis revealed a good correspondence in the mean behavior and the probabilistic distributions of the datasets. The verification tests that were applied to AERIS suggest that results are consistent enough to be credited as reasonable and realistic. In conclusion, the main reason thatmotivated the creation of this model was to produce a reliable yet simple screening tool that would provide decision and policy making support for different “what-if” scenarios at a low computing cost. The interaction with politicians and other stakeholders dictated that reconciling the complexity of modeling with the conciseness of policies should be reflected by AERIS in both, its conceptual and computational structures. It should be noted however, that AERIS has been created under a policy-driven framework and by no means should be considered as a substitute of the ordinary AQM.