3 resultados para Decidability
em Universidad Politécnica de Madrid
Resumo:
We provide a method whereby, given mode and (upper approximation) type information, we can detect procedures and goals that can be guaranteed to not fail (i.e., to produce at least one solution or not termínate). The technique is based on an intuitively very simple notion, that of a (set of) tests "covering" the type of a set of variables. We show that the problem of determining a covering is undecidable in general, and give decidability and complexity results for the Herbrand and linear arithmetic constraint systems. We give sound algorithms for determining covering that are precise and efiicient in practice. Based on this information, we show how to identify goals and procedures that can be guaranteed to not fail at runtime. Applications of such non-failure information include programming error detection, program transiormations and parallel execution optimization, avoiding speculative parallelism and estimating lower bounds on the computational costs of goals, which can be used for granularity control. Finally, we report on an implementation of our method and show that better results are obtained than with previously proposed approaches.
Resumo:
Abstract: In this paper we propose a generalization of the accepting splicingsystems introduced in Mitrana et al. (Theor Comput Sci 411:2414?2422,2010). More precisely, the input word is accepted as soon as a permittingword is obtained provided that no forbidding word has been obtained sofar, otherwise it is rejected. Note that in the new variant of acceptingsplicing system the input word is rejected if either no permitting word isever generated (like in Mitrana et al. in Theor Comput Sci 411:2414?2422,2010) or a forbidding word has been generated and no permitting wordhad been generated before. We investigate the computational power ofthe new variants of accepting splicing systems and the interrelationshipsamong them. We show that the new condition strictly increases thecomputational power of accepting splicing systems. Although there areregular languages that cannot be accepted by any of the splicing systemsconsidered here, the new variants can accept non-regular and even non-context-free languages, a situation that is not very common in the case of(extended) finite splicing systems without additional restrictions. We alsoshow that the smallest class of languages out of the four classes definedby accepting splicing systems is strictly included in the class of context-free languages. Solutions to a few decidability problems are immediatelyderived from the proof of this result.
Resumo:
We consider here uniform distributed pushdown automata systems (UDPAS), namely distributed pushdown automata systems having all components identical pushdown automata. We consider here just a single protocol for activating/deactivating components, namely a component stays active as long as it can perform moves, as well as two ways of accepting the input word: by empty stacks (all components have empty stacks) or by final states (all components are in final states), when the input word is completely read. We mainly investigate the computational power of UDPAS accepting by empty stacks and a few decidability and closure properties of the families of languages they define. Some directions for further work and open problems are also discussed.