3 resultados para Data type converter
em Universidad Politécnica de Madrid
Resumo:
Los tipos de datos concurrentes son implementaciones concurrentes de las abstracciones de datos clásicas, con la diferencia de que han sido específicamente diseñados para aprovechar el gran paralelismo disponible en las modernas arquitecturas multiprocesador y multinúcleo. La correcta manipulación de los tipos de datos concurrentes resulta esencial para demostrar la completa corrección de los sistemas de software que los utilizan. Una de las mayores dificultades a la hora de diseñar y verificar tipos de datos concurrentes surge de la necesidad de tener que razonar acerca de un número arbitrario de procesos que invocan estos tipos de datos de manera concurrente. Esto requiere considerar sistemas parametrizados. En este trabajo estudiamos la verificación formal de propiedades temporales de sistemas concurrentes parametrizados, poniendo especial énfasis en programas que manipulan estructuras de datos concurrentes. La principal dificultad a la hora de razonar acerca de sistemas concurrentes parametrizados proviene de la interacción entre el gran nivel de concurrencia que éstos poseen y la necesidad de razonar al mismo tiempo acerca de la memoria dinámica. La verificación de sistemas parametrizados resulta en sí un problema desafiante debido a que requiere razonar acerca de estructuras de datos complejas que son accedidas y modificadas por un numero ilimitado de procesos que manipulan de manera simultánea el contenido de la memoria dinámica empleando métodos de sincronización poco estructurados. En este trabajo, presentamos un marco formal basado en métodos deductivos capaz de ocuparse de la verificación de propiedades de safety y liveness de sistemas concurrentes parametrizados que manejan estructuras de datos complejas. Nuestro marco formal incluye reglas de prueba y técnicas especialmente adaptadas para sistemas parametrizados, las cuales trabajan en colaboración con procedimientos de decisión especialmente diseñados para analizar complejas estructuras de datos concurrentes. Un aspecto novedoso de nuestro marco formal es que efectúa una clara diferenciación entre el análisis del flujo de control del programa y el análisis de los datos que se manejan. El flujo de control del programa se analiza utilizando reglas de prueba y técnicas de verificación deductivas especialmente diseñadas para lidiar con sistemas parametrizados. Comenzando a partir de un programa concurrente y la especificación de una propiedad temporal, nuestras técnicas deductivas son capaces de generar un conjunto finito de condiciones de verificación cuya validez implican la satisfacción de dicha especificación temporal por parte de cualquier sistema, sin importar el número de procesos que formen parte del sistema. Las condiciones de verificación generadas se corresponden con los datos manipulados. Estudiamos el diseño de procedimientos de decisión especializados capaces de lidiar con estas condiciones de verificación de manera completamente automática. Investigamos teorías decidibles capaces de describir propiedades de tipos de datos complejos que manipulan punteros, tales como implementaciones imperativas de pilas, colas, listas y skiplists. Para cada una de estas teorías presentamos un procedimiento de decisión y una implementación práctica construida sobre SMT solvers. Estos procedimientos de decisión son finalmente utilizados para verificar de manera automática las condiciones de verificación generadas por nuestras técnicas de verificación parametrizada. Para concluir, demostramos como utilizando nuestro marco formal es posible probar no solo propiedades de safety sino además de liveness en algunas versiones de protocolos de exclusión mutua y programas que manipulan estructuras de datos concurrentes. El enfoque que presentamos en este trabajo resulta ser muy general y puede ser aplicado para verificar un amplio rango de tipos de datos concurrentes similares. Abstract Concurrent data types are concurrent implementations of classical data abstractions, specifically designed to exploit the great deal of parallelism available in modern multiprocessor and multi-core architectures. The correct manipulation of concurrent data types is essential for the overall correctness of the software system built using them. A major difficulty in designing and verifying concurrent data types arises by the need to reason about any number of threads invoking the data type simultaneously, which requires considering parametrized systems. In this work we study the formal verification of temporal properties of parametrized concurrent systems, with a special focus on programs that manipulate concurrent data structures. The main difficulty to reason about concurrent parametrized systems comes from the combination of their inherently high concurrency and the manipulation of dynamic memory. This parametrized verification problem is very challenging, because it requires to reason about complex concurrent data structures being accessed and modified by threads which simultaneously manipulate the heap using unstructured synchronization methods. In this work, we present a formal framework based on deductive methods which is capable of dealing with the verification of safety and liveness properties of concurrent parametrized systems that manipulate complex data structures. Our framework includes special proof rules and techniques adapted for parametrized systems which work in collaboration with specialized decision procedures for complex data structures. A novel aspect of our framework is that it cleanly differentiates the analysis of the program control flow from the analysis of the data being manipulated. The program control flow is analyzed using deductive proof rules and verification techniques specifically designed for coping with parametrized systems. Starting from a concurrent program and a temporal specification, our techniques generate a finite collection of verification conditions whose validity entails the satisfaction of the temporal specification by any client system, in spite of the number of threads. The verification conditions correspond to the data manipulation. We study the design of specialized decision procedures to deal with these verification conditions fully automatically. We investigate decidable theories capable of describing rich properties of complex pointer based data types such as stacks, queues, lists and skiplists. For each of these theories we present a decision procedure, and its practical implementation on top of existing SMT solvers. These decision procedures are ultimately used for automatically verifying the verification conditions generated by our specialized parametrized verification techniques. Finally, we show how using our framework it is possible to prove not only safety but also liveness properties of concurrent versions of some mutual exclusion protocols and programs that manipulate concurrent data structures. The approach we present in this work is very general, and can be applied to verify a wide range of similar concurrent data types.
Resumo:
En este proyecto se realiza el diseño e implementación de un sistema que detecta anomalías en las entradas de entornos controlados. Para ello, se hace uso de las últimas técnicas en visión por computador y se avisa visual y auditivamente, mediante un sistema hardware que recibe señales del ordenador al que está conectado. Se marca y fotografía, a una o varias personas, que cometen una infracción en las entradas de un establecimiento, vigilado con sistemas de vídeo. Las imágenes se almacenan en las carpetas correspondientes. El sistema diseñado es colaborativo, por lo tanto, las cámaras que intervienen, se comunican entre ellas a través de estructuras de datos con el objetivo de intercambiar información. Además, se utiliza conexión inalámbrica desde un dispositivo móvil para obtener una visión global del entorno desde cualquier lugar del mundo. La aplicación se desarrolla en el entorno MATLAB, que permite un tratamiento de la señal de imagen apropiado para el presente proyecto. Asimismo, se proporciona al usuario una interfaz gráfica con la que interactuar de manera sencilla, evitando así, el cambio de parámetros en la estructura interna del programa cuando se quiere variar el entorno o el tipo de adquisición de datos. El lenguaje que se escoge facilita la ejecución en distintos sistemas operativos, incluyendo Windows o iOS y, de esta manera, se proporciona flexibilidad. ABSTRACT. This project studies the design and implementation of a system that detects any anomalies on the entrances to controlled environments. To this end, it is necessary the use of last techniques in computer vision in order to notify visually and aurally, by a hardware system which receives signs from the computer it is connected to. One or more people that commit an infringement while entering into a secured environment, with video systems, are marked and photographed and those images are stored in their belonging file folder. This is a collaborative design system, therefore, every involved camera communicates among themselves through data structures with the purpose of exchanging information. Furthermore, to obtain a global environment vision from any place in the world it uses a mobile wireless connection. The application is developed in MATLAB environment because it allows an appropriate treatment of the image signal for this project. In addition, the user is given a graphical interface to easily interact, avoiding with this, changing any parameters on the program’s intern structure, when it requires modifying the environment or the data type acquisition. The chosen language eases its execution in different operating systems, including Windows or iOS, providing flexibility.
Resumo:
Diabetes is the most common disease nowadays in all populations and in all age groups. diabetes contributing to heart disease, increases the risks of developing kidney disease, blindness, nerve damage, and blood vessel damage. Diabetes disease diagnosis via proper interpretation of the diabetes data is an important classification problem. Different techniques of artificial intelligence has been applied to diabetes problem. The purpose of this study is apply the artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining (DM) technique for the diabetes disease diagnosis. The Pima Indians diabetes was used to test the proposed model AMMLP. The results obtained by AMMLP were compared with decision tree (DT), Bayesian classifier (BC) and other algorithms, recently proposed by other researchers, that were applied to the same database. The robustness of the algorithms are examined using classification accuracy, analysis of sensitivity and specificity, confusion matrix. The results obtained by AMMLP are superior to obtained by DT and BC.