32 resultados para Data pre-processing

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been demonstrated that rating trust and reputation of individual nodes is an effective approach in distributed environments in order to improve security, support decision-making and promote node collaboration. Nevertheless, these systems are vulnerable to deliberate false or unfair testimonies. In one scenario, the attackers collude to give negative feedback on the victim in order to lower or destroy its reputation. This attack is known as bad mouthing attack. In another scenario, a number of entities agree to give positive feedback on an entity (often with adversarial intentions). This attack is known as ballot stuffing. Both attack types can significantly deteriorate the performances of the network. The existing solutions for coping with these attacks are mainly concentrated on prevention techniques. In this work, we propose a solution that detects and isolates the abovementioned attackers, impeding them in this way to further spread their malicious activity. The approach is based on detecting outliers using clustering, in this case self-organizing maps. An important advantage of this approach is that we have no restrictions on training data, and thus there is no need for any data pre-processing. Testing results demonstrate the capability of the approach in detecting both bad mouthing and ballot stuffing attack in various scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background:Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods: A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results: After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions: We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Remote sensing information from spaceborne and airborne platforms continues to provide valuable data for different environmental monitoring applications. In this sense, high spatial resolution im-agery is an important source of information for land cover mapping. For the processing of high spa-tial resolution images, the object-based methodology is one of the most commonly used strategies. However, conventional pixel-based methods, which only use spectral information for land cover classification, are inadequate for classifying this type of images. This research presents a method-ology to characterise Mediterranean land covers in high resolution aerial images by means of an object-oriented approach. It uses a self-calibrating multi-band region growing approach optimised by pre-processing the image with a bilateral filtering. The obtained results show promise in terms of both segmentation quality and computational efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El daño cerebral adquirido (DCA) es un problema social y sanitario grave, de magnitud creciente y de una gran complejidad diagnóstica y terapéutica. Su elevada incidencia, junto con el aumento de la supervivencia de los pacientes, una vez superada la fase aguda, lo convierten también en un problema de alta prevalencia. En concreto, según la Organización Mundial de la Salud (OMS) el DCA estará entre las 10 causas más comunes de discapacidad en el año 2020. La neurorrehabilitación permite mejorar el déficit tanto cognitivo como funcional y aumentar la autonomía de las personas con DCA. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma donde se puedan diseñar tratamientos que sean intensivos, personalizados, monitorizados y basados en la evidencia. Ya que son estas cuatro características las que aseguran que los tratamientos son eficaces. A diferencia de la mayor parte de las disciplinas médicas, no existen asociaciones de síntomas y signos de la alteración cognitiva que faciliten la orientación terapéutica. Actualmente, los tratamientos de neurorrehabilitación se diseñan en base a los resultados obtenidos en una batería de evaluación neuropsicológica que evalúa el nivel de afectación de cada una de las funciones cognitivas (memoria, atención, funciones ejecutivas, etc.). La línea de investigación en la que se enmarca este trabajo de investigación pretende diseñar y desarrollar un perfil cognitivo basado no sólo en el resultado obtenido en esa batería de test, sino también en información teórica que engloba tanto estructuras anatómicas como relaciones funcionales e información anatómica obtenida de los estudios de imagen. De esta forma, el perfil cognitivo utilizado para diseñar los tratamientos integra información personalizada y basada en la evidencia. Las técnicas de neuroimagen representan una herramienta fundamental en la identificación de lesiones para la generación de estos perfiles cognitivos. La aproximación clásica utilizada en la identificación de lesiones consiste en delinear manualmente regiones anatómicas cerebrales. Esta aproximación presenta diversos problemas relacionados con inconsistencias de criterio entre distintos clínicos, reproducibilidad y tiempo. Por tanto, la automatización de este procedimiento es fundamental para asegurar una extracción objetiva de información. La delineación automática de regiones anatómicas se realiza mediante el registro tanto contra atlas como contra otros estudios de imagen de distintos sujetos. Sin embargo, los cambios patológicos asociados al DCA están siempre asociados a anormalidades de intensidad y/o cambios en la localización de las estructuras. Este hecho provoca que los algoritmos de registro tradicionales basados en intensidad no funcionen correctamente y requieran la intervención del clínico para seleccionar ciertos puntos (que en esta tesis hemos denominado puntos singulares). Además estos algoritmos tampoco permiten que se produzcan deformaciones grandes deslocalizadas. Hecho que también puede ocurrir ante la presencia de lesiones provocadas por un accidente cerebrovascular (ACV) o un traumatismo craneoencefálico (TCE). Esta tesis se centra en el diseño, desarrollo e implementación de una metodología para la detección automática de estructuras lesionadas que integra algoritmos cuyo objetivo principal es generar resultados que puedan ser reproducibles y objetivos. Esta metodología se divide en cuatro etapas: pre-procesado, identificación de puntos singulares, registro y detección de lesiones. Los trabajos y resultados alcanzados en esta tesis son los siguientes: Pre-procesado. En esta primera etapa el objetivo es homogeneizar todos los datos de entrada con el objetivo de poder extraer conclusiones válidas de los resultados obtenidos. Esta etapa, por tanto, tiene un gran impacto en los resultados finales. Se compone de tres operaciones: eliminación del cráneo, normalización en intensidad y normalización espacial. Identificación de puntos singulares. El objetivo de esta etapa es automatizar la identificación de puntos anatómicos (puntos singulares). Esta etapa equivale a la identificación manual de puntos anatómicos por parte del clínico, permitiendo: identificar un mayor número de puntos lo que se traduce en mayor información; eliminar el factor asociado a la variabilidad inter-sujeto, por tanto, los resultados son reproducibles y objetivos; y elimina el tiempo invertido en el marcado manual de puntos. Este trabajo de investigación propone un algoritmo de identificación de puntos singulares (descriptor) basado en una solución multi-detector y que contiene información multi-paramétrica: espacial y asociada a la intensidad. Este algoritmo ha sido contrastado con otros algoritmos similares encontrados en el estado del arte. Registro. En esta etapa se pretenden poner en concordancia espacial dos estudios de imagen de sujetos/pacientes distintos. El algoritmo propuesto en este trabajo de investigación está basado en descriptores y su principal objetivo es el cálculo de un campo vectorial que permita introducir deformaciones deslocalizadas en la imagen (en distintas regiones de la imagen) y tan grandes como indique el vector de deformación asociado. El algoritmo propuesto ha sido comparado con otros algoritmos de registro utilizados en aplicaciones de neuroimagen que se utilizan con estudios de sujetos control. Los resultados obtenidos son prometedores y representan un nuevo contexto para la identificación automática de estructuras. Identificación de lesiones. En esta última etapa se identifican aquellas estructuras cuyas características asociadas a la localización espacial y al área o volumen han sido modificadas con respecto a una situación de normalidad. Para ello se realiza un estudio estadístico del atlas que se vaya a utilizar y se establecen los parámetros estadísticos de normalidad asociados a la localización y al área. En función de las estructuras delineadas en el atlas, se podrán identificar más o menos estructuras anatómicas, siendo nuestra metodología independiente del atlas seleccionado. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la identificación automática de lesiones utilizando estudios de imagen médica estructural, concretamente estudios de resonancia magnética. Basándose en estos cimientos, se han abrir nuevos campos de investigación que contribuyan a la mejora en la detección de lesiones. ABSTRACT Brain injury constitutes a serious social and health problem of increasing magnitude and of great diagnostic and therapeutic complexity. Its high incidence and survival rate, after the initial critical phases, makes it a prevalent problem that needs to be addressed. In particular, according to the World Health Organization (WHO), brain injury will be among the 10 most common causes of disability by 2020. Neurorehabilitation improves both cognitive and functional deficits and increases the autonomy of brain injury patients. The incorporation of new technologies to the neurorehabilitation tries to reach a new paradigm focused on designing intensive, personalized, monitored and evidence-based treatments. Since these four characteristics ensure the effectivity of treatments. Contrary to most medical disciplines, it is not possible to link symptoms and cognitive disorder syndromes, to assist the therapist. Currently, neurorehabilitation treatments are planned considering the results obtained from a neuropsychological assessment battery, which evaluates the functional impairment of each cognitive function (memory, attention, executive functions, etc.). The research line, on which this PhD falls under, aims to design and develop a cognitive profile based not only on the results obtained in the assessment battery, but also on theoretical information that includes both anatomical structures and functional relationships and anatomical information obtained from medical imaging studies, such as magnetic resonance. Therefore, the cognitive profile used to design these treatments integrates information personalized and evidence-based. Neuroimaging techniques represent an essential tool to identify lesions and generate this type of cognitive dysfunctional profiles. Manual delineation of brain anatomical regions is the classical approach to identify brain anatomical regions. Manual approaches present several problems related to inconsistencies across different clinicians, time and repeatability. Automated delineation is done by registering brains to one another or to a template. However, when imaging studies contain lesions, there are several intensity abnormalities and location alterations that reduce the performance of most of the registration algorithms based on intensity parameters. Thus, specialists may have to manually interact with imaging studies to select landmarks (called singular points in this PhD) or identify regions of interest. These two solutions have the same inconvenient than manual approaches, mentioned before. Moreover, these registration algorithms do not allow large and distributed deformations. This type of deformations may also appear when a stroke or a traumatic brain injury (TBI) occur. This PhD is focused on the design, development and implementation of a new methodology to automatically identify lesions in anatomical structures. This methodology integrates algorithms whose main objective is to generate objective and reproducible results. It is divided into four stages: pre-processing, singular points identification, registration and lesion detection. Pre-processing stage. In this first stage, the aim is to standardize all input data in order to be able to draw valid conclusions from the results. Therefore, this stage has a direct impact on the final results. It consists of three steps: skull-stripping, spatial and intensity normalization. Singular points identification. This stage aims to automatize the identification of anatomical points (singular points). It involves the manual identification of anatomical points by the clinician. This automatic identification allows to identify a greater number of points which results in more information; to remove the factor associated to inter-subject variability and thus, the results are reproducible and objective; and to eliminate the time spent on manual marking. This PhD proposed an algorithm to automatically identify singular points (descriptor) based on a multi-detector approach. This algorithm contains multi-parametric (spatial and intensity) information. This algorithm has been compared with other similar algorithms found on the state of the art. Registration. The goal of this stage is to put in spatial correspondence two imaging studies of different subjects/patients. The algorithm proposed in this PhD is based on descriptors. Its main objective is to compute a vector field to introduce distributed deformations (changes in different imaging regions), as large as the deformation vector indicates. The proposed algorithm has been compared with other registration algorithms used on different neuroimaging applications which are used with control subjects. The obtained results are promising and they represent a new context for the automatic identification of anatomical structures. Lesion identification. This final stage aims to identify those anatomical structures whose characteristics associated to spatial location and area or volume has been modified with respect to a normal state. A statistical study of the atlas to be used is performed to establish which are the statistical parameters associated to the normal state. The anatomical structures that may be identified depend on the selected anatomical structures identified on the atlas. The proposed methodology is independent from the selected atlas. Overall, this PhD corroborates the investigated research hypotheses regarding the automatic identification of lesions based on structural medical imaging studies (resonance magnetic studies). Based on these foundations, new research fields to improve the automatic identification of lesions in brain injury can be proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El presente trabajo describe una nueva metodología para la detección automática del espacio glotal de imágenes laríngeas tomadas a partir de 15 vídeos grabados por el servicio ORL del hospital Gregorio Marañón de Madrid con luz estroboscópica. El sistema desarrollado está basado en el modelo de contornos activos (snake). El algoritmo combina en el pre-procesado, algunas técnicas tradicionales (umbralización y filtro de mediana) con técnicas más sofisticadas tales como filtrado anisotrópico. De esta forma, se obtiene una imagen apropiada para el uso de las snakes. El valor escogido para el umbral es del 85% del pico máximo del histograma de la imagen; sobre este valor la información de los píxeles no es relevante. El filtro anisotrópico permite distinguir dos niveles de intensidad, uno es el fondo y el otro es la glotis. La inicialización se basa en obtener el módulo del campo GVF; de esta manera se asegura un proceso automático para la selección del contorno inicial. El rendimiento del algoritmo se valida usando los coeficientes de Pratt y se compara contra una segmentación realizada manualmente y otro método automático basado en la transformada de watershed. SUMMARY: The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images taken from 15 videos recorded by the ENT service of the Gregorio Marañon Hospital in Madrid with videostroboscopic equipment. The system is based on active contour models (snakes). The algorithm combines for the pre-processing, some traditional techniques (thresholding and median filter) with more sophisticated techniques such as anisotropic filtering. In this way, we obtain an appropriate image for the use of snake. The value selected for the threshold is 85% of the maximum peak of the image histogram; over this point the information of the pixels is not relevant. The anisotropic filter permits to distinguish two intensity levels, one is the background and the other one is the glottis. The initialization is based on the obtained magnitude by GVF field; in this manner an automatic process for the initial contour selection will be assured. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation and another automatic method based on the watershed transformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different procedures for monitoring the evolution of leafy vegetables, under plastic covers during cold storage, have been studied. Fifteen spinach leaves were put inside Petri dishes covered with three different plastic films and stored at 4 °C for 21 days. Hyperspectral images were taken during this storage. A radiometric correction is proposed in order to avoid the variation in transmittance of the plastic films during time in the hyperspectral images. Afterwards, three spectral pre-processing procedures (no pre-process, Savitsky–Golay and Standard Normal Variate, combined with Principal Component Analysis) were applied to obtain different models. The corresponding artificial images of scores were studied by means of Analysis of Variance to compare their ability to sense the aging of the leaves. All models were able to monitor the aging through storage. Radiometric correction seemed to work properly and could allow the supervision of shelf-life in leafy vegetables through commercial transparent films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We address a cognitive radio scenario, where a number of secondary users performs identification of which primary user, if any, is trans- mitting, in a distributed way and using limited location information. We propose two fully distributed algorithms: the first is a direct iden- tification scheme, and in the other a distributed sub-optimal detection based on a simplified Neyman-Pearson energy detector precedes the identification scheme. Both algorithms are studied analytically in a realistic transmission scenario, and the advantage obtained by detec- tion pre-processing is also verified via simulation. Finally, we give details of their fully distributed implementation via consensus aver- aging algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermorheological changes in high hydrostatic pressure (HHP)-treated chickpea flour (CF) slurries were studied as a function of pressure level (0.1, 150, 300, 400, and 600 MPa) and slurry concentration (1:5, 1:4, 1:3, and 1:2 flour-to-water ratios). HHP-treated slurries were subsequently analyzed for changes in properties produced by heating, under both isothermal and non-isothermal processes. Elasticity (G′) of pressurized slurry increased with pressure applied and concentration. Conversely, heat-induced CF paste gradually transformed from solid-like behavior to liquid-like behavior as a function of moisture content and pressure level. The G′ and enthalpy of the CF paste decreased with increasing pressure level in proportion with the extent of HHP-induced starch gelatinization. At 25 °C and 15 min, HHP treatment at 450 and 600 MPa was sufficient to complete gelatinization of CF slurry at the lowest concentration (1:5), while more concentrated slurries would require higher pressures and temperature during treatment or longer holding times. Industrial relevance Demand for chickpea gel has increased considerably in the health and food industries because of its many beneficial effects. However, its use is affected by its very difficult handling. Judicious application of high hydrostatic pressure (HHP) at appropriate levels, adopted as a pre-processing instrument in combination with heating processes, is presented as an innovative technology to produce a remarkable decrease in thermo-hardening of heat-induced chickpea flour paste, permitting the development of new chickpea-based products with desirable handling properties and sensory attributes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La influencia de la aerodinámica en el diseño de los trenes de alta velocidad, unida a la necesidad de resolver nuevos problemas surgidos con el aumento de la velocidad de circulación y la reducción de peso del vehículo, hace evidente el interés de plantear un estudio de optimización que aborde tales puntos. En este contexto, se presenta en esta tesis la optimización aerodinámica del testero de un tren de alta velocidad, llevada a cabo mediante el uso de métodos de optimización avanzados. Entre estos métodos, se ha elegido aquí a los algoritmos genéticos y al método adjunto como las herramientas para llevar a cabo dicha optimización. La base conceptual, las características y la implementación de los mismos se detalla a lo largo de la tesis, permitiendo entender los motivos de su elección, y las consecuencias, en términos de ventajas y desventajas que cada uno de ellos implican. El uso de los algorimos genéticos implica a su vez la necesidad de una parametrización geométrica de los candidatos a óptimo y la generación de un modelo aproximado que complementa al método de optimización. Estos puntos se describen de modo particular en el primer bloque de la tesis, enfocada a la metodología seguida en este estudio. El segundo bloque se centra en la aplicación de los métodos a fin de optimizar el comportamiento aerodinámico del tren en distintos escenarios. Estos escenarios engloban los casos más comunes y también algunos de los más exigentes a los que hace frente un tren de alta velocidad: circulación en campo abierto con viento frontal o viento lateral, y entrada en túnel. Considerando el caso de viento frontal en campo abierto, los dos métodos han sido aplicados, permitiendo una comparación de las diferentes metodologías, así como el coste computacional asociado a cada uno, y la minimización de la resistencia aerodinámica conseguida en esa optimización. La posibilidad de evitar parametrizar la geometría y, por tanto, reducir el coste computacional del proceso de optimización es la característica más significativa de los métodos adjuntos, mientras que en el caso de los algoritmos genéticos se destaca la simplicidad y capacidad de encontrar un óptimo global en un espacio de diseño multi-modal o de resolver problemas multi-objetivo. El caso de viento lateral en campo abierto considera nuevamente los dos métoxi dos de optimización anteriores. La parametrización se ha simplificado en este estudio, lo que notablemente reduce el coste numérico de todo el estudio de optimización, a la vez que aún recoge las características geométricas más relevantes en un tren de alta velocidad. Este análisis ha permitido identificar y cuantificar la influencia de cada uno de los parámetros geométricos incluídos en la parametrización, y se ha observado que el diseño de la arista superior a barlovento es fundamental, siendo su influencia mayor que la longitud del testero o que la sección frontal del mismo. Finalmente, se ha considerado un escenario más a fin de validar estos métodos y su capacidad de encontrar un óptimo global. La entrada de un tren de alta velocidad en un túnel es uno de los casos más exigentes para un tren por el pico de sobrepresión generado, el cual afecta a la confortabilidad del pasajero, así como a la estabilidad del vehículo y al entorno próximo a la salida del túnel. Además de este problema, otro objetivo a minimizar es la resistencia aerodinámica, notablemente superior al caso de campo abierto. Este problema se resuelve usando algoritmos genéticos. Dicho método permite obtener un frente de Pareto donde se incluyen el conjunto de óptimos que minimizan ambos objetivos. ABSTRACT Aerodynamic design of trains influences several aspects of high-speed trains performance in a very significant level. In this situation, considering also that new aerodynamic problems have arisen due to the increase of the cruise speed and lightness of the vehicle, it is evident the necessity of proposing an optimization study concerning the train aerodynamics. Thus, the aerodynamic optimization of the nose shape of a high-speed train is presented in this thesis. This optimization is based on advanced optimization methods. Among these methods, genetic algorithms and the adjoint method have been selected. A theoretical description of their bases, the characteristics and the implementation of each method is detailed in this thesis. This introduction permits understanding the causes of their selection, and the advantages and drawbacks of their application. The genetic algorithms requirethe geometrical parameterization of any optimal candidate and the generation of a metamodel or surrogate model that complete the optimization process. These points are addressed with a special attention in the first block of the thesis, focused on the methodology considered in this study. The second block is referred to the use of these methods with the purpose of optimizing the aerodynamic performance of a high-speed train in several scenarios. These scenarios englobe the most representative operating conditions of high-speed trains, and also some of the most exigent train aerodynamic problems: front wind and cross-wind situations in open air, and the entrance of a high-speed train in a tunnel. The genetic algorithms and the adjoint method have been applied in the minimization of the aerodynamic drag on the train with front wind in open air. The comparison of these methods allows to evaluate the methdology and computational cost of each one, as well as the resulting minimization of the aerodynamic drag. Simplicity and robustness, the straightforward realization of a multi-objective optimization, and the capability of searching a global optimum are the main attributes of genetic algorithm. However, the requirement of geometrically parameterize any optimal candidate is a significant drawback that is avoided with the use of the adjoint method. This independence of the number of design variables leads to a relevant reduction of the pre-processing and computational cost. Considering the cross-wind stability, both methods are used again for the minimization of the side force. In this case, a simplification of the geometric parameterization of the train nose is adopted, what dramatically reduces the computational cost of the optimization process. Nevertheless, some of the most important geometrical characteristics are still described with this simplified parameterization. This analysis identifies and quantifies the influence of each design variable on the side force on the train. It is observed that the A-pillar roundness is the most demanding design parameter, with a more important effect than the nose length or the train cross-section area. Finally, a third scenario is considered for the validation of these methods in the aerodynamic optimization of a high-speed train. The entrance of a train in a tunnel is one of the most exigent train aerodynamic problems. The aerodynamic consequences of high-speed trains running in a tunnel are basically resumed in two correlated phenomena, the generation of pressure waves and an increase in aerodynamic drag. This multi-objective optimization problem is solved with genetic algorithms. The result is a Pareto front where a set of optimal solutions that minimize both objectives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent continuous development of Cooperative ITS has resulted in several initiatives which focus on different parts of the Cooperative environment landscape. The FOTsis project focuses on the infrastructure side of the Cooperative environment and will deploy and test 7 services designed to maximise the benefits of the integration of the road operator and infrastructure-based information providers into the ITS environment. This integration can take place in any of the stages of data collection, processing and actuations of the services, but also support and trigger external tasks such as operations of the emergency response entities, etc. This paper describes the current status of the project and focuses on the specification of the supporting architecture to the services tested: references, a brief outline of the requirements’ definition, and the FOTsis architecture proposal, with some conclusions about the architecture tests conducted. The outlook on the project’s next steps is given in the last section of the paper.