2 resultados para Dança do ventre

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real-time monitoring of multimedia Quality of Experience is a critical task for the providers of multimedia delivery services: from television broadcasters to IP content delivery networks or IPTV. For such scenarios, meaningful metrics are required which can generate useful information to the service providers that overcome the limitations of pure Quality of Service monitoring probes. However, most of objective multimedia quality estimators, aimed at modeling the Mean Opinion Score, are difficult to apply to massive quality monitoring. Thus we propose a lightweight and scalable monitoring architecture called Qualitative Experience Monitoring (QuEM), based on detecting identifiable impairment events such as the ones reported by the customers of those services. We also carried out a subjective assessment test to validate the approach and calibrate the metrics. Preliminary results of this test set support our approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Canopies are complex multilayered structures comprising individual plant crowns exposing a multifaceted surface area to sunlight. Foliage arrangement and properties are the main mediators of canopy functions. The leaves act as light traps whose exposure to sunlight varies with time of the day, date and latitude in a trade-off between photosynthetic light harvesting and excessive or photoinhibitory light avoidance. To date, ecological research based upon leaf sampling has been limited by the available echnology, with which data acquisition becomes labour intensive and time-consuming, given the verwhelming number of leaves involved. 2. In the present study, our goal involved developing a tool capable of easuring a sufficient number of leaves to enable analysis of leaf populations, tree crowns and canopies.We specifically tested whether a cell phone working as a 3Dpointer could yield reliable, repeatable and valid leaf anglemeasurements with a simple gesture. We evaluated the accuracy of this method under controlled conditions, using a 3D digitizer, and we compared performance in the field with the methods commonly used. We presented an equation to estimate the potential proportion of the leaf exposed to direct sunlight (SAL) at any given time and compared the results with those obtained bymeans of a graphicalmethod. 3. We found a strong and highly significant correlation between the graphical methods and the equation presented. The calibration process showed a strong correlation between the results derived from the two methods with amean relative difference below 10%. Themean relative difference in calculation of instantaneous exposure was below 5%. Our device performed equally well in diverse locations, in which we characterized over 700 leaves in a single day. 4. The newmethod, involving the use of a cell phone, ismuchmore effective than the traditionalmethods or digitizers when the goal is to scale up from leaf position to performance of leaf populations, tree crowns or canopies. Our methodology constitutes an affordable and valuable tool within which to frame a wide range of ecological hypotheses and to support canopy modelling approaches.