6 resultados para Daedalus

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the participation of DAEDALUS at ImageCLEF 2011 Plant Identification task. The task is evaluated as a supervised classification problem over 71 tree species from the French Mediterranean area used as class labels, based on visual content from scan, scan-like and natural photo images. Our approach to this task is to build a classifier based on the detection of keypoints from the images extracted using Lowe’s Scale Invariant Feature Transform (SIFT) algorithm. Although our overall classification score is very low as compared to other participant groups, the main conclusion that can be drawn is that SIFT keypoints seem to work significantly better for photos than for the other image types, so our approach may be a feasible strategy for the classification of this kind of visual content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the participation of DAEDALUS at ImageCLEF 2011 Medical Retrieval task. We have focused on multimodal (or mixed) experiments that combine textual and visual retrieval. The main objective of our research has been to evaluate the effect on the medical retrieval process of the existence of an extended corpus that is annotated with the image type, associated to both the image itself and also to its textual description. For this purpose, an image classifier has been developed to tag each document with its class (1st level of the hierarchy: Radiology, Microscopy, Photograph, Graphic, Other) and subclass (2nd level: AN, CT, MR, etc.). For the textual-based experiments, several runs using different semantic expansion techniques have been performed. For the visual-based retrieval, different runs are defined by the corpus used in the retrieval process and the strategy for obtaining the class and/or subclass. The best results are achieved in runs that make use of the image subclass based on the classification of the sample images. Although different multimodal strategies have been submitted, none of them has shown to be able to provide results that are at least comparable to the ones achieved by the textual retrieval alone. We believe that we have been unable to find a metric for the assessment of the relevance of the results provided by the visual and textual processes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes our participation at SemEval- 2014 sentiment analysis task, in both contextual and message polarity classification. Our idea was to com- pare two different techniques for sentiment analysis. First, a machine learning classifier specifically built for the task using the provided training corpus. On the other hand, a lexicon-based approach using natural language processing techniques, developed for a ge- neric sentiment analysis task with no adaptation to the provided training corpus. Results, though far from the best runs, prove that the generic model is more robust as it achieves a more balanced evaluation for message polarity along the different test sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes our participation at the RepLab 2014 reputation dimensions scenario. Our idea was to evaluate the best combination strategy of a machine learning classifier with a rule-based algorithm based on logical expressions of terms. Results show that our baseline experiment using just Naive Bayes Multinomial with a term vector model representation of the tweet text is ranked second among runs from all participants in terms of accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes our participation at PAN 2014 author profiling task. Our idea was to define, develop and evaluate a simple machine learning classifier able to guess the gender and the age of a given user based on his/her texts, which could become part of the solution portfolio of the company. We were interested in finding not the best possible classifier that achieves the highest accuracy, but to find the optimum balance between performance and throughput using the most simple strategy and less dependent of external systems. Results show that our software using Naive Bayes Multinomial with a term vector model representation of the text is ranked quite well among the rest of participants in terms of accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the participation of DAEDALUS at the LogCLEF lab in CLEF 2011. This year, the objectives of our participation are twofold. The first topic is to analyze if there is any measurable effect on the success of the search queries if the native language and the interface language chosen by the user are different. The idea is to determine if this difference may condition the way in which the user interacts with the search application. The second topic is to analyze the user context and his/her interaction with the system in the case of successful queries, to discover out any relation among the user native language, the language of the resource involved and the interaction strategy adopted by the user to find out such resource. Only 6.89% of queries are successful out of the 628,607 queries in the 320,001 sessions with at least one search query in the log. The main conclusion that can be drawn is that, in general for all languages, whether the native language matches the interface language or not does not seem to affect the success rate of the search queries. On the other hand, the analysis of the strategy adopted by users when looking for a particular resource shows that people tend to use the simple search tool, frequently first running short queries build up of just one specific term and then browsing through the results to locate the expected resource