3 resultados para Da Ponte
em Universidad Politécnica de Madrid
Resumo:
Within both aesthetic and history fields, civil engineering occupies a privileged place among arts whose manifestations are based on drawing. In this work, Leonardo’s creativity concerned with civil bridges proyects, have been studied. Leonardo designed ten bridges: eight of them intended for military porposes and only two were purely planned for civil functionaly - “Ponte sul corno d’oro”, infolio 66, manuscript L; and “Ponte a due piani”, represented in the Manuscript B at the Institute of France, infolio 23. There can be no doubt about Leonardo’s intentions when he started on designing these two bridges: his genious for creativy focused on providing both singulary and functionaly to the structures: they should be admired and utilized at the same time, a monument for civil society to be used.The work presented here attemps to make an scientist-historical trip along these Leonardo’s bridges, highlighting their technical, geometrical and aesthetic characteristics, as well as emphasizing Leonardo’s human, scientist and artistic nature.
Resumo:
Let X be an in�finite-dimensional complex Banach space. Very recently, several results on the existence of entire functions on X bounded on a given ball B1 � X and unbounded on another given ball B2 � X have been obtained. In this paper we consider the problem of �finding entire functions which are uniformly bounded on a collection of balls and unbounded on the balls of some other collection. RESUMEN. Sea X un espacio de Banach complejo de dimensión infinita. En este trabajo, los autores estudian el problema de encontrar una función entera en X que esté uniformemente acotada en una colección de de bolas en X y que no esté acotada en las bolas de otra colección.
Resumo:
In this paper we prove several results on the existence of analytic functions on an infinite dimensional real Banach space which are bounded on some given collection of open sets and unbounded on others. In addition, we also obtain results on the density of some subsets of the space of all analytic functions for natural locally convex topologies on this space. RESUMEN. Los autores demuestran varios resultados de existencia de funciones analíticas en espacios de Banach reales de dimensión infinita que están acotadas en un colección de subconjuntos abiertos y no acotadas en los conjuntos de otra colección. Además, se demuestra la densidad de ciertos subconjuntos de funciones analíticas para varias topologías localmente convexas.