2 resultados para DM
em Universidad Politécnica de Madrid
Resumo:
We propose a new method for ranking alternatives in multicriteria decision-making problems when there is imprecision concerning the alternative performances, component utility functions and weights. We assume decision maker?s preferences are represented by an additive multiattribute utility function, in which weights can be modeled by independent normal variables, fuzzy numbers, value intervals or by an ordinal relation. The approaches are based on dominance measures or exploring the weight space in order to describe which ratings would make each alternative the preferred one. On the one hand, the approaches based on dominance measures compute the minimum utility difference among pairs of alternatives. Then, they compute a measure by which to rank the alternatives. On the other hand, the approaches based on exploring the weight space compute confidence factors describing the reliability of the analysis. These methods are compared using Monte Carlo simulation.
Resumo:
Dominance measuring methods are a new approach to deal with complex decision-making problems with imprecise information. These methods are based on the computation of pairwise dominance values and exploit the information in the dominance matrix in dirent ways to derive measures of dominance intensity and rank the alternatives under consideration. In this paper we propose a new dominance measuring method to deal with ordinal information about decision-maker preferences in both weights and component utilities. It takes advantage of the centroid of the polytope delimited by ordinal information and builds triangular fuzzy numbers whose distances to the crisp value 0 constitute the basis for the de?nition of a dominance intensity measure. Monte Carlo simulation techniques have been used to compare the performance of this method with other existing approaches.