20 resultados para DISTANCE MATRICES
em Universidad Politécnica de Madrid
Resumo:
Gamma detectors based on monolithic scintillator blocks coupled to APDs matrices have proved to be a good alternative to pixelated ones for PET scanners. They provide comparable spatial resolution, improve the sensitivity and make easier the mechanical design of the system. In this study we evaluate by means of Geant4-based simulations the possibility of replacing the APDs by SiPMs. Several commercial matrices of light sensors coupled to LYSO:Ce monolithic blocks have been simulated and compared. Regarding the spatial resolution and linearity of the detector, SiPMs with high photo detection efficiency could become an advantageous replacement for the APDs
Resumo:
La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.
Resumo:
En este trabajo se presenta un método para el modelado de cadenas cinemáticas de robots que salva las dificultades asociadas a la elección de los sistemas de coordenadas y obtención de los parámetros de Denavit-Hartenberg. El método propuesto parte del conocimiento de la posición y orientación del extremo del robot en su configuración de reposo, para ir obteniendo en qué se transforman éstas tras los sucesivos movimientos de sus grados de libertad en secuencia descendente, desde el más alejado al más cercano a su base. Los movimientos son calculados en base a las Matrices de Desplazamiento, que permiten conocer en que se transforma un punto cuando éste es desplazado (trasladado o rotado) con respecto a un eje que no pasa por el origen. A diferencia del método de Denavit-Hartenberg, que precisa ubicar para cada eslabón el origen y las direcciones de los vectores directores de los sistemas de referencia asociados, el método basado en las Matrices de Desplazamiento precisa solo identificar el eje de cada articulación, lo que le hace más simple e intuitivo que aquel. La obtención de las Matrices de Desplazamiento y con ellas del Modelo Cinemático Directo a partir de los ejes de la articulación, puede hacerse mediante algunas simples operaciones, fácilmente programables.
Resumo:
Abstract Tree tomato (Solanum betaceum) is an Andean small tree cultivated for its juicy fruits. Little information is available on the characterization of genetic resources and breeding of this neglected crop. We have studied the molecular diversity with AFLP markers using 11 combinations of primers of a collection of 25 S. betaceum accessions belonging to four cultivar groups, most of which had been previously morphologically characterized, as well as one accession of the wild relative S. cajanumense.Atotal of 197 AFLP fragments were scored, of which 84 (43 %) were polymorphic. When excluding S. cajanumense from the analysis, the number of polymorphic AFLP fragments was 78 (40 %). Unique AFLP fingerprints were obtained for every accession, but no AFLP fragments specific and universal to any of the four cultivar groups were found. The total genetic diversity (HT) of cultivated accessions was HT = 0.2904, while for cultivar groups it ranged from HT = 0.1846 in the orange group to HT = 0.2498 in the orange pointed group. Genetic differentiation among cultivar groups (GST) was low (GST = 0.2248), which was matched by low values of genetic distance among cultivar groups. The diversity of collections from Ecuador, which we hypothesize is a center of diversity for tree tomato, was similar to that from other origins (HT = 0.2884 and HT = 0.2645, respectively). Cluster and PCoA analyses clearly separated wild S. cajanumense from the cultivated species. However, materials of different cultivar groups and origins were intermingled in both analyses. The Mantel test correlation coefficient of the matrices of morphological and AFLP distances was low (-0.024) and non-significant. Overall, the results show that a wide diversity is present in each of the cultivar groups, indicate that Ecuador may be regarded as a center of accumulation of diversity for this crop, and confirm that AFLP and morphological characterization data are complementary. The results obtained are of value for the conservation of genetic resources and breeding of tree tomato, as an assessment of the genetic diversity and relationships among differen
Resumo:
The need for the use of another surveillance system when radar cannot be used is the reason for the development of the Multilateration (MLT) Systems. However, there are many systems that operate in the L-Band (960-1215MHz) that could produce interference between systems. At airports, some interference has been detected between transmissions of MLT systems (1030MHz and 1090MHz) and Distance Measuring Equipment (DME) (960-1215MHz).
Resumo:
Many existing engineering works model the statistical characteristics of the entities under study as normal distributions. These models are eventually used for decision making, requiring in practice the definition of the classification region corresponding to the desired confidence level. Surprisingly enough, however, a great amount of computer vision works using multidimensional normal models leave unspecified or fail to establish correct confidence regions due to misconceptions on the features of Gaussian functions or to wrong analogies with the unidimensional case. The resulting regions incur in deviations that can be unacceptable in high-dimensional models. Here we provide a comprehensive derivation of the optimal confidence regions for multivariate normal distributions of arbitrary dimensionality. To this end, firstly we derive the condition for region optimality of general continuous multidimensional distributions, and then we apply it to the widespread case of the normal probability density function. The obtained results are used to analyze the confidence error incurred by previous works related to vision research, showing that deviations caused by wrong regions may turn into unacceptable as dimensionality increases. To support the theoretical analysis, a quantitative example in the context of moving object detection by means of background modeling is given.
Resumo:
High temperatures and relative humidity can compromise animal welfare on the farm level, but less is known about those changes during long distance transport of domestic animals to slaughter. Although upper temperature limits have been established to transport pigs in Europe, few indices include relative or absolute humidity maxima or mention appropriate enthalpy ranges.
Resumo:
This paper analyzes the correlation between the fluctuations of the electrical power generated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical power time series from a large collection of photovoltaic inverters of a same plant is an impor- tant contribution in the context of models built upon simplified assumptions to overcome the absence of such data. This data set is divided into three different fluctuation categories with a clustering proce- dure which performs correctly with the clearness index and the wavelet variances. Afterwards, the time dependent correlation between the electrical power time series of the inverters is esti- mated with the wavelet transform. The wavelet correlation depends on the distance between the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time scales below one minute are low without dependence on the daily fluctuation level. For time scales above 20 minutes, positive high correlation values are obtained, and the decay rate with the distance depends on the daily fluctuation level. At intermediate time scales the correlation depends strongly on the daily fluctuation level. The proposed methods have been implemented using free software. Source code is available as supplementary material.
Resumo:
In this work, we analyze the influence of the processing pressure and the substrate–target distance on the synthesis by reactive sputtering of c-axis oriented polycrystalline aluminum nitride thin films deposited on Si(100) wafers. The crystalline quality of AlN has been characterized by high-resolution X-ray diffraction (HR-XRD). The films exhibited a very high degree of c-axis orientation especially when a low process pressure was used. After growth, residual stress measurements obtained indirectly from radius of curvature measurements of the wafer prior and after deposition are also provided. Two different techniques are used to determine the curvature—an optically levered laser beam and a method based on X-ray diffraction. There is a transition from compressive to tensile stress at a processing pressure around 2 mTorr. The transition occurs at different pressures for thin films of different thickness. The degree of c-axis orientation was not affected by the target–substrate distance as it was varied in between 30 and 70 mm.
Resumo:
biomecanica de la natación
Resumo:
Sight distance is of major importance for road safety either when designing new roads or analysing the alignment of existing roads. It is essential that available sight distance in roads is long enough for emergency stops or overtaking manoeuvres. Also, it is vital for engineers/researchers that the tools used for that analysis are both powerful and intuitive. Based on ArcGIS, the application to be presented not only performs an exhaustive sight distance calculation, but allows an accurate analysis of 3D alignment, using all new tools, from a Digital Elevation Model and vehicle trajectory. The software has been successfully utilised to analyse several two-lane rural roads in Spain. In addition, the software produces thematic maps representing sight distance in which supplementary information about crashes, traffic flow, speed or design consistency could be included, allowing traffic safety studies.
Resumo:
The reinforcing effect of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles in two different polymer matrices, isotactic polypropylene (iPP) and polyphenylene sulfide (PPS), has been investigated by means of dynamic depth-sensing indentation. The hardness and elastic modulus enhancement upon filler addition is analyzed in terms of two main contributions: changes in the polymer matrix nanostructure and intrinsic properties of the filler including matrix-particle load transfer. It is found that the latter mainly determines the overall mechanical improvement, whereas the nanostructural changes induced in the polymer matrix only contribute to a minor extent. Important differences are suggested between the mechanisms of deformation in the two nanocomposites, resulting in a moderate mechanical enhancement in case of iPP (20% for a filler loading of 1%), and a remarkable hardness increase in case of PPS (60% for the same filler content). The nature of the polymer amorphous phase, whether in the glassy or rubbery state, seems to play here an important role. Finally, nanoindentation and dynamic mechanical analysis measurements are compared and discussed in terms of the different directionality of the stresses applied.
Resumo:
Sight distance plays an important role in road traffic safety. Two types of Digital Elevation Models (DEMs) are utilized for the estimation of available sight distance in roads: Digital Terrain Models (DTMs) and Digital Surface Models (DSMs). DTMs, which represent the bare ground surface, are commonly used to determine available sight distance at the design stage. Additionally, the use of DSMs provides further information about elements by the roadsides such as trees, buildings, walls or even traffic signals which may reduce available sight distance. This document analyses the influence of three classes of DEMs in available sight distance estimation. For this purpose, diverse roads within the Region of Madrid (Spain) have been studied using software based on geographic information systems. The study evidences the influence of using each DEM in the outcome as well as the pros and cons of using each model.
Resumo:
El objetivo del presente trabajo de investigación es explorar nuevas técnicas de implementación, basadas en grafos, para las Redes de Neuronas, con el fin de simplificar y optimizar las arquitecturas y la complejidad computacional de las mismas. Hemos centrado nuestra atención en una clase de Red de Neuronas: las Redes de Neuronas Recursivas (RNR), también conocidas como redes de Hopfield. El problema de obtener la matriz sináptica asociada con una RNR imponiendo un determinado número de vectores como puntos fijos, no está en absoluto resuelto, el número de vectores prototipo que pueden ser almacenados en la red, cuando se utiliza la ley de Hebb, es bastante limitado, la red se satura rápidamente cuando se pretende almacenar nuevos prototipos. La ley de Hebb necesita, por tanto, ser revisada. Algunas aproximaciones dirigidas a solventar dicho problema, han sido ya desarrolladas. Nosotros hemos desarrollado una nueva aproximación en la forma de implementar una RNR en orden a solucionar estos problemas. La matriz sináptica es obtenida mediante la superposición de las componentes de los vectores prototipo, sobre los vértices de un Grafo, lo cual puede ser también interpretado como una coloración de dicho grafo. Cuando el periodo de entrenamiento se termina, la matriz de adyacencia del Grafo Resultante o matriz de pesos, presenta ciertas propiedades por las cuales dichas matrices serán llamadas tetraédricas. La energía asociada a cualquier estado de la red es representado por un punto (a,b) de R2. Cada uno de los puntos de energía asociados a estados que disten lo mismo del vector cero está localizado sobre la misma línea de energía de R2. El espacio de vectores de estado puede, por tanto, clasificarse en n clases correspondientes a cada una de las n diferentes distancias que puede tener cualquier vector al vector cero. La matriz (n x n) de pesos puede reducirse a un n-vector; de esta forma, tanto el tiempo de computación como el espacio de memoria requerido par almacenar los pesos, son simplificados y optimizados. En la etapa de recuperación, es introducido un vector de parámetros R2, éste es utilizado para controlar la capacidad de la red: probaremos que lo mayor es la componente a¡, lo menor es el número de puntos fijos pertenecientes a la línea de energía R¡. Una vez que la capacidad de la red ha sido controlada mediante este parámetro, introducimos otro parámetro, definido como la desviación del vector de pesos relativos, este parámetro sirve para disminuir ostensiblemente el número de parásitos. A lo largo de todo el trabajo, hemos ido desarrollando un ejemplo, el cual nos ha servido para ir corroborando los resultados teóricos, los algoritmos están escritos en un pseudocódigo, aunque a su vez han sido implamentados utilizando el paquete Mathematica 2.2., mostrándolos en un volumen suplementario al texto.---ABSTRACT---The aim of the present research is intended to explore new specifícation techniques of Neural Networks based on Graphs to be used in the optimization and simplification of Network Architectures and Computational Complexhy. We have focused our attention in a, well known, class of Neural Networks: the Recursive Neural Networks, also known as Hopfield's Neural Networks. The general problem of constructing the synaptic matrix associated with a Recursive Neural Network imposing some vectors as fixed points is fer for completery solved, the number of prototype vectors (learning patterns) which can be stored by Hebb's law is rather limited and the memory will thus quickly reach saturation if new prototypes are continuously acquired in the course of time. Hebb's law needs thus to be revised in order to allow new prototypes to be stored at the expense of the older ones. Some approaches related with this problem has been developed. We have developed a new approach of implementing a Recursive Neural Network in order to sob/e these kind of problems, the synaptic matrix is obtained superposing the components of the prototype vectors over the vértices of a Graph which may be interpreted as a coloring of the Graph. When training is finished the adjacency matrix of the Resulting Graph or matrix of weights presents certain properties for which it may be called a tetrahedral matrix The energy associated to any possible state of the net is represented as a point (a,b) in R2. Every one of the energy points associated with state-vectors having the same Hamming distance to the zero vector are located over the same energy Une in R2. The state-vector space may be then classified in n classes according to the n different possible distances firom any of the state-vectors to the zero vector The (n x n) matrix of weights may also be reduced to a n-vector of weights, in this way the computational time and the memory space required for obtaining the weights is optimized and simplified. In the recall stage, a parameter vectora is introduced, this parameter is used for controlling the capacity of the net: it may be proved that the bigger is the r, component of J, the lower is the number of fixed points located in the r¡ energy line. Once the capacity of the net has been controlled by the ex parameter, we introduced other parameter, obtained as the relative weight vector deviation parameter, in order to reduce the number of spurious states. All along the present text, we have also developed an example, which serves as a prove for the theoretical results, the algorithms are shown in a pseudocode language in the text, these algorithm so as the graphics have been developed also using the Mathematica 2.2. mathematical package which are shown in a supplementary volume of the text.
Resumo:
The aim of this study was to compare the race characteristics of the start and turn segments of national and regional level swimmers. In the study, 100 and 200-m events were analysed during the finals session of the Open Comunidad de Madrid (Spain) tournament. The “individualized-distance” method with two-dimensional direct linear transformation algorithm was used to perform race analyses. National level swimmers obtained faster velocities in all race segments and stroke comparisons,although significant inter-level differences in start velocity were only obtained in half (8 out of 16) of the analysed events. Higher level swimmers also travelled for longer start and turn distances but only in the race segments where the gain of speed was high. This was observed in the turn segments, in the backstroke and butterfly strokes and during the 200-m breaststroke event, but not in any of the freestyle events. Time improvements due to the appropriate extension of the underwater subsections appeared to be critical for the end race result and should be carefully evaluated by the “individualized-distance” method.