17 resultados para Cutting of thin metal sheets

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing demands in MEMS fabrication are leading to new requirements in production technology. Especially the packaging and assembly require high accuracy in positioning and high reproducibility in combination with low production costs. Conventional assembly technology and mechanical adjustment methods are time consuming and expensive. Each component of the system has to be positioned and fixed. Also adjustment of the parts after joining requires additional mechanical devices that need to be accessible after joining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing demands in MEMS fabrication are leading to new requirements in production technology. Especially the packaging and assembly require high accuracy in positioning and high reproducibility in combination with low production costs. Conventional assembly technology and mechanical adjustment methods are time consuming and expensive. Each component of the system has to be positioned and fixed. Also adjustment of the parts after joining requires additional mechanical devices that need to be accessible after joining. Accurate positioning of smallest components represents an up-to-date key assignment in micro-manufacturing. It has proven to be more time and cost efficient to initially assemble the components with widened tolerances before precisely micro-adjusting them in a second step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous and long-pulse lasers have been used for the forming of metal sheets in macroscopic mechanical applications. However, for the manufacturing of micro-electromechanical systems (MEMS), the use of ns laser pulses provides a suitable parameter matching over an important range of sheet components that, preserving the short interaction time scale required for the predominantly mechanical (shock) induction of deformation residual stresses, allows for the successful processing of components in a medium range of miniaturization without appreciable thermal deformation.. In the present paper, the physics of laser shock microforming and the influence of the different experimental parameters on the net bending angle are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A metal-less RXI collimator has been designed. Unlike to the conventional RXI collimators, whose back surface and central part of the front surface have to be metalized, this collimator does not include any mirrored surface. The back surface is designed as a grooved surface providing two TIR reflections for all rays impinging on it. The main advantage of the presented design is lower manufacturing cost since there is no need for the expensive process of metalization. Also, unlike to the conventional RXI collimators this design performs good colour mixing. The first prototype of V-groove RXI collimator has been made of PMMA by direct cutting using a five axis diamond turning machine. The experimental measurements of the first prototype are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inner oval dome of the Basílica de la Virgen los Desamparados, built in 1701, is one of the most slender masonry vaults ever built. It is a tile dome with a total thickness of 80 mm and a main span of 18.50 m. It was built without centering with great ingenuity and economy of means, thirty three years after the termination of the building in 1667. The dome is in contact with the external dome only in the inferior part with the projecting ribs of the intrados, the lunettes of the windows, and, in the upper part, through 126 inclined iron bars. This unique construction was revealed in the 1990's in the studies previous to the restoration of the Basílica, and has given rise to different theories about the mode of construction and the structural behaviour and safety of the dome. The present contribution aims to provide a plausible hypothesis about the mode of construction and to explain the safety of the inner dome which has stood, without need of repairs or reinforcement, for 300 hundred years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adding Zn improves crop growth, increases seed yield and also positively affects nutritional quality. After Zn fertilization, there is normally a period of several years in which residual effects provide an adequate supply of Zn to successive crops. Immediately after the application of Zn sources water-soluble Zn slowly but continually decreases. Various factors, including time and moisture conditions, affect the aging process and modify the solubility of the metal in soil and therefore its availability. In previous experiments, we studied the residual effect of synthetic chelates, obtained that the amounts of potentially available Zn decreased in the second cropping year due to aging processes. The present study was undertaken to verify variations in the residual effects of applying four different synthetic Zn sources

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photovoltaic modules based on thin film technology are gaining importance in the photovoltaic market, and module installers and plant owners have increasingly begun to request methods of performing module quality control. These modules pose additional problems for measuring power under standard test conditions (STC), beyond problems caused by the temperature of the module and the ambient variables. The main difficulty is that the modules’ power rates may vary depending both on the amount of time they have been exposed to the sun during recent hours and on their history of sunlight exposure. In order to assess the current state of the module, it is necessary to know its sunlight exposure history. Thus, an easily accomplishable testing method that ensures the repeatability of the measurements of the power generated is needed. This paper examines different tests performed on commercial thin film PV modules of CIS, a-Si and CdTe technologies in order to find the best way to obtain measurements. A method for obtaining indoor measurements of these technologies that takes into account periods of sunlight exposure is proposed. Special attention is paid to CdTe as a fast growing technology in the market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A gene encoding a homolog to the cation diffusion facilitator protein DmeF from Cupriavidus metallidurans has been identified in the genome of Rhizobium leguminosarum UPM791. The R. leguminosarum dmeF gene is located downstream of an open reading frame (designated dmeR) encoding a protein homologous to the nickel- and cobalt-responsive transcriptional regulator RcnR from Escherichia coli. Analysis of gene expression showed that the R. leguminosarum dmeRF genes are organized as a transcriptional unit whose expression is strongly induced by nickel and cobalt ions, likely by alleviating the repressor activity of DmeR on dmeRF transcription. An R. leguminosarum dmeRF mutant strain displayed increased sensitivity to Co(II) and Ni(II), whereas no alterations of its resistance to Cd(II), Cu(II), or Zn(II) were observed. A decrease of symbiotic performance was observed when pea plants inoculated with an R. leguminosarum dmeRF deletion mutant strain were grown in the presence of high concentrations of nickel and cobalt. The same mutant induced significantly lower activity levels of NiFe hydrogenase in microaerobic cultures. These results indicate that the R. leguminosarum DmeRF system is a metal-responsive efflux mechanism acting as a key element for metal homeostasis in R. leguminosarum under free-living and symbiotic conditions. The presence of similar dmeRF gene clusters in other Rhizobiaceae suggests that the dmeRF system is a conserved mechanism for metal tolerance in legume endosymbiotic bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment of laser shock processing effects on mechanical resistance of thin dissimilar laser welded joints

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we review simulation and experimental studies of thermal capillary wave fluctuations as an ideal means for probing the underlying disjoining pressure and surface tensions, and more generally, fine details of the Interfacial Hamiltonian Model. We discuss recent simulation results that reveal a film-height-dependent surface tension not accounted for in the classical Interfacial Hamiltonian Model. We show how this observation may be explained bottom-up from sound principles of statistical thermodynamics and discuss some of its implications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser Welding (LW) is more often used in manufacturing due to its advantages, such as accurate control, good repeatability, less heat input, opportunities for joining of special materials, high speed, capability to join small dimension parts etc. LW is dedicated to robotized manufacturing, and the fabrication cells are using various level of flexibility, from specialized robots to very flexible setups. This paper features several LW applications using two industrially-scaled manufacturing cells at UPM Laser Centre (CLUPM) of Polytechnical University of Madrid (Universidad Politécnica de Madrid). The one dedicated to Remote Laser Welding (RLW) of thin sheets for automotive and other sectors uses a CO2 laser of 3500 W. The second has a high flexibility, is based on a 6-axis ABB robot and a Nd:YAG laser of 3300 W, and is meant for various laser processing methods, including welding. After a short description of each cell, several LW applications experimented at CLUPM and recently implemented in industry are briefly presented: RLW of automotive coated sheets, LW of high strength automotive sheets, LW vs. laser hybrid welding (LHW) of Double Phase steel thin sheets, and LHW of thin sheets of stainless steel and carbon steel (dissimilar joints). The main technological issues overcame and the critical process parameters are pointed out. Conclusions about achievements and trends are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation addresses the over-all performance of dissimilar joints of low carbon steel and stainless steel thin sheets achieved by laser hybrid welding. First, the technological de-velopment of dissimilar laser hybrid welding of thin sheets is briefly pre-sented. Joint characterisation by means of macro and microstructural examination and hardness tests is fur-ther described. Microhardness testing was used as an alternative and effi-cient mean of assessing the changes in mechanical properties of difficult to characterize areas, like HAZ and fu-sion zone of these thin sheets Laser-GMA dissimilar welded joints. The overall tensile performance of the joint is discussed together with the weld metal strength overmatching. The ten-sile tests results indicate that in case of transversally loaded joints, the po-sitive difference in yield strength between the weld metal and the base materials (overmatching welds) may reduce the weight of the structure, without diminishing its strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport properties of thin-film solar cells based on wide-gap CuGaSe(2) absorbers have been investigated as a function of the bulk [Ga]/[Cu] ratio ranging from 1.01 to 1.33. We find that (i) the recombination processes in devices prepared from absorbers with a composition close to stoichiometry ([Ga]/[Cu] = 1.01) are strongly tunnelling assisted resulting in low recombination activation energies (E(a)) of approx. 0.95 eV in the dark and 1.36 eV under illumination. (ii) With an increasing [Ga]/[Cu] ratio, the transport mechanism changes to be dominated by thermally activated Shockley-Read-Hall recombination with similar E(a) values of approx. 1.52-1.57 eV for bulk [Ga]/[Cu] ratios of 1.12-1.33. The dominant recombination processes take place at the interface between CdS buffer and CuGaSe(2) absorber independently from the absorber composition. The increase of E(a) with the [Ga]/[Cu] ratio correlates with the open circuit voltage and explains the better performance of corresponding solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of liquid metal technology in fusion devices requires R&D related to many phenomena: interaction between liquid metals and structural material as corrosion, erosion and passivation techniques; magneto-hydrodynamics; free surface fluid-dynamics and any other physical aspect that will be needed for their safe reliable operation. In particular, there is a significant shortage of experimental facilities dedicated to the development of the lithium technology. In the framework of the TECHNOFUSION project, an experimental laboratory devoted to the lithium technology development is proposed, in order to shed some light in the path to IFMIF and the design of chamber's first wall and divertors. The conceptual design foresee a development in two stages, the first one consisting on a material testing loop. The second stage proposes the construction of a mock-up of the IFMIF target that will allow to assess the behaviour of a free-surface lithium target under vacuum conditions. In this paper, such conceptual design is addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallization and grain growth technique of thin film silicon are among the most promising methods for improving efficiency and lowering cost of solar cells. A major advantage of laser crystallization and annealing over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the amorphous silicon thin film, melting it and changing the microstructure to polycrystalline silicon (poly-Si) as it cools. Depending on the laser density, the vaporization temperature can be reached at the center of the irradiated area. In these cases ablation effects are expected and the annealing process becomes ineffective. The heating process in the a-Si thin film is governed by the general heat transfer equation. The two dimensional non-linear heat transfer equation with a moving heat source is solve numerically using the finite element method (FEM), particularly COMSOL Multiphysics. The numerical model help to establish the density and the process speed range needed to assure the melting and crystallization without damage or ablation of the silicon surface. The samples of a-Si obtained by physical vapour deposition were irradiated with a cw-green laser source (Millennia Prime from Newport-Spectra) that delivers up to 15 W of average power. The morphology of the irradiated area was characterized by confocal laser scanning microscopy (Leica DCM3D) and Scanning Electron Microscopy (SEM Hitachi 3000N). The structural properties were studied by micro-Raman spectroscopy (Renishaw, inVia Raman microscope).