5 resultados para Crystal atomic structure

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We will present calculations of opacities for matter under LTE conditions. Opacities are needed in radiation transport codes to study processes like Inertial Confinement Fusion and plasma amplifiers in X-ray secondary sources. For the calculations we use the code BiGBART, with either a hydrogenic approximation with j-splitting or self-consistent data generated with the atomic physics code FAC. We calculate the atomic structure, oscillator strengths, radiative transition energies, including UTA computations, and photoionization cross-sections. A DCA model determines the configurations considered in the computation of the opacities. The opacities obtained with these two models are compared with experimental measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present and discuss an algorithm to identify and characterize the long icosahedral structures (staggered pentagonal nanowires with 1-5-1-5 atomic structure) that appear in Molecular Dynamics simulations of metallic nanowires of different species subjected to stretching. The use of this algorithm allows the identification of pentagonal rings forming the icosahedral structure as well as the determination of its number np , and the maximum length of the pentagonal nanowire Lpm. The algorithm is tested with some ideal structures to show its ability to discriminate between pentagonal rings and other ring structures. We applied the algorithm to Ni nanowires with temperatures ranging between 4K and 865K, stretched along the [111], [100] and [110] directions. We studied statistically the formation of pentagonal nanowires obtaining the distributions of length Lpm and number of rings np as function of the temperature. The Lpm distribution presents a peaked shape, with peaks located at fixed distances whose separation corresponds to the distance between two consecutive pentagonal rings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrogen isotopes play a critical role both in inertial and magnetic confinemen Nuclear Fusion. Since the preferent fuel needed for this technology is a mixture of deuterium and tritium. The study of these isotopes particularly at very low temperatures carries a technological interest in other applications. The present line promotes a deep study on the structural configuration that hydrogen and deuterium adopt at cryogenic temperatures and at high pressures. Typical conditions occurring in present Inertial Fusion target designs. Our approach is aims to determine the crystal structure characteristics, phase transitions and other parameters strongly correlated to variations of temperature and pressure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This letter presents a novel temperature sensor, which consists of an interdigitated comb electrode structure with a micrometric-scale size, nanometric metallic layer, and nematic liquid crystal (NLC) film. This sensor exploits the permittivity dependence of the NLC with temperature and principle of electrical conductivity above the percolation threshold in thin film metallic layers. The latter has been demonstrated to increase the temperature sensitivity considerably. The high impedance input reduces the power dissipation, and the high enough voltage output makes it easy to measure the output signal with high precision. The operation principle and fabrication process as well as the characterization of the temperature sensor are presented. Experimental results show that the device offers a sensitivity of 9 mV/°C and is dependent on the applied voltage. This is six times greater than the same structure without the use of a nanometric layer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neutron diffraction data of DyCrO4 oxide, prepared at 4 GPa and 833 K from the ambient pressure zircon-type, reveal that crystallize with the scheelite-type structure, space group I41/a. Accompanying this structural phase transition induced by pressure the magnetic properties change dramatically from ferromagnetism in the case of zircon to antiferromagnetism for the scheelite polymorph with a T N= 19 K. The analysis of the neutron diffraction data obtained at 1.2 K has been used to determine the magnetic structure of this DyCrO4-scheelite oxide which can be described with a k = [0, 0, 0] as propagation vector, where the Dy and Cr moments are lying in the ab-plane of the scheelite structure. The ordered magnetic moments are 10 µB and 1 µB for Dy+3 and Cr+5 respectively