6 resultados para Crown lands
em Universidad Politécnica de Madrid
Resumo:
Forest connectivity restoration is a major goal in natural resource planning. Given the high amount of abandoned cultivated lands, setting efficient methods for the reforestation of agricultural lands offers a good opportunity to face this issue. However, reforestations must be carefully planned, which poses two main challenges. In first place, to determine those agricultural lands that, once reforested, would meet more effectively the planning goals. As a further step, in order to grant the success of the activity, it is fairly advisable to select those tree species that are more adapted to each particular environment. Here we intend to give response to both requirements by proposing a sequential and integrated methodology that has been implemented in two Spanish forest districts, which are formed by several landscape types that were previously defined and characterized. Using the software Conefor Sensinode, a powerful tool for quantifying habitat availability that is based on graph theory concepts, we determined the landscapes where forest planning should have connectivity as a major concern and, afterwards, we detected the agricultural patches that would contribute most to enhance connectivity if they were reforested. The subsequent reforestation species assessment was performed within these priority patches. Using penalized logistic regressions we fitted ecological niche models for the Spanish native tree species. The models were trained with species distribution data from the Spanish Forest Map and used climatic and lithological variables as predictors. Model predictions were used to build ordered lists of suitable species for each priority patch. The lists include dominant and non dominant tree species and allow adding biodiversity goals to the reforestation planning. The result of this combined methodology is a map of agricultural patches that would contribute most to uphold forest connectivity if they were reforested and a list of suitable tree species for each patch ordered by occurrence probability. Therefore the proposed methodology may be useful for suitable and efficient forest planning and landscape designing.
Resumo:
Drought spells can impose severe impacts in most vulnerable farms. It is well known that uninsured exposure exacerbates income inequality in farming systems. However, high administrative costs of traditional insurance hinder small farmers? access to risk management tools. The existence of moral hazard and systemic risk prevents the implementation of traditional insurance programs to address drought risk in rural areas. Innovative technologies like satellite images are being used to derive vegetation index which are highly correlated with drought impacts. The implementation of this technology in agricultural insurance may help to overcome some of the limitations of traditional insurance. However, basis risk has been identified as one of the main problems that hinder the acceptance of index insurance. In this paper we focus on the analyses of basis risk under different contract options in the grazing lands of the Araucanía region. A vegetation index database is used to develop an actuarial insurance model and estimate risk premiums for moderate and severe drought coverage. Risk premium sharply increases with risk coverage. In contrast with previous findings in the literature, our results are not conclusive and show that lowering the coverage level does not necessarily imply a reduction in basis risk. Further analyses of the relation between contract design and basis risk is a promising area of research that may render an important social utility for most vulnerable farming systems.
Resumo:
An investigation was undertaken consisting of a state-of-the-art and comparative analysis of currently available methods for calculating the structural stability of wave walls in sloping breakwaters. A total of six design schemes are addressed. The conditions under which the formulations and ranges of validity are explicitly indicated by their authors, are given. The lack of definition in parameters to be used and aspects not taken into account in their investigations are discussed and the results of this analysis are given in a final table.
Resumo:
This paper presents an extensive and useful comparison of existing formulas to estimate wave forces on crown walls. The paper also provides valuable insights into crown wall behaviour, suggesting the use of formulas for prior sizing and recommending, in any case, tests on a physical model in order to confirm the final design. The authors helpfully advise to use more than one method to obtain results closer to reality, always taking into account the test conditions under which each formula was developed
Resumo:
The study area is La Colacha sub-basins from Arroyos Menores basins, natural areas at West and South of Río Cuarto in Province of Córdoba of Argentina, fertile with loess soils and monsoon temperate climate, but with soil erosions including regressive gullies that degrade them progressively. Cultivated gently since some hundred sixty years, coordinated action planning became necessary to conserve lands while keeping good agro-production. The authors had improved data on soils and on hydrology for the study area, evaluated systems of soil uses and actions to be recommended and applied Decision Support Systems (DSS) tools for that, and were conducted to use discrete multi-criteria models (MCDM) for the more global views about soil conservation and hydraulic management actions and about main types of use of soils. For that they used weighted PROMETHEE, ELECTRE, and AHP methods with a system of criteria grouped as environmental, economic and social, and criteria from their data on effects of criteria. The alternatives resulting offer indication for planning depending somehow on sub basins and on selections of weights, but actions for conservation of soils and water management measures are recommended to conserve the basins conditions, actually sensibly degrading, mainly keeping actual uses of the lands.
Resumo:
Growing energy crops on marginal land has been promoted as a way of ensuring that biomass production involves an acceptable and sustainable use of land. Saline and saline-prone agricultural lands represent an opportunity for growing energy crops avoiding the displacement of food production and contributing to restoration of degraded land. Giant reed (Arundo donax L.) is a perennial grass that has been proposed as a promising energy crop for lignocellulosic biomass production while its tolerance to salinity has been proved. In this work, the identification of surplus saline lands that could be irrigated with saline waters for growing tolerant-energy crops (giant reed) in the mainland of Spain and the assessment of the agronomically attainable yield in these limiting growing conditions were undertaken. To this purpose, a GIS analysis was conducted using geodatabases related to saline areas, agro-climatic conditions, irrigation water requirements, agricultural land availability, restrictions regarding the range of electrical conductivity tolerated by the crop, competition with agro-food crops and irrigation water provisions. According to the approach developed, the irrigated and saline agricultural area available and suitable for biomass production from giant reed amounted up to 34 412 ha. The agronomically attainable yield in these limiting conditions was estimated at 12.7 – 22.2 t dm ha−1 yr−1 and the potential production of lignocellulosic biomass, 597 338 t dm yr−1. The methodology followed in this study can be applied to other target regions; it allows the identification of this type of marginal lands, where salinity-tolerant plant species could be grown for bioenergy purposes, avoiding competition with agro-food crops, and where soil restoration measurements should be undertaken.