5 resultados para Crowd

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic floor loads induced by crowds in gymnasium or stadium structures are commonly modelled by superposition of the individual contributions using reduction factors for the different Fourier coefficients. These Fourier coefficients and the reduction factors are calculated using full scale measurements. Generally the testing is performed on platforms or structures that can be considered rigid, such that the natural frequencies are higher than the frequencies of the spectator movement. In this paper we shall present the testing done on a structure that used to be a gymnasium as well as the procedure used to identify its dynamic properties and a first evaluation of the socalled “group effect”.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective: This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods: The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results: Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite counting accuracy for all players as a function of the number of games considered and the experience of the players. In addition, we propose a mathematical equation that accurately models the collective parasite counting performance. Conclusions: This research validates the online gaming approach for crowdsourced counting of malaria parasites in images of thick blood films. The findings support the conclusion that nonexperts are able to rapidly learn how to identify the typical features of malaria parasites in digitized thick blood samples and that combining the analyses of several users provides similar parasite counting accuracy rates as those of expert microscopists. This experiment illustrates the potential of the crowdsourced gaming approach for performing routine malaria parasite quantification, and more generally for solving biomedical image analysis problems, with future potential for telediagnosis related to global health challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crowd induced dynamic loading in large structures, such as gymnasiums or stadium, is usually modelled as a series of harmonic loads which are defined in terms of their Fourier coefficients. Different values of these coefficients that were obtained from full scale measurements can be found in codes. Recently, an alternative has been proposed, based on random generation of load time histories that take into account phase lag among individuals inside the crowd. This paper presents the testing done on a structure designed to be a gymnasium. Two series of dynamic test were performed on the gym slab. For the first test an electrodynamic shaker was placed at several locations and during the second one people located inside a marked area bounced and jumped guided by different metronome rates. A finite element model (FEM) is presented and a comparison of numerically predicted and experimentally observed vibration modes and frequencies has been used to assess its validity. The second group of measurements will be compared with predictions made using the FEM model and three alternatives for crowd induced load modelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crowd induced dynamic loading in large structures, such as gymnasiums or stadiums, is usually modelled as a series of harmonic loads which are defined in terms of their Fourier coefficients. Different values of these Fourier coefficients that were obtained from full scale measurements can be found in codes. Recently, an alternative has been proposed, based on random generation of load time histories that take into account phase lags among individuals inside the crowd. Generally the testing is performed on platforms or structures that can be considered rigid because their natural frequencies are higher than the excitation frequencies associated with crowd loading. In this paper we shall present the testing done on a structure designed to be a gymnasium, which has natural frequencies within that range. In this test the gym slab was instrumented with acceleration sensors and different people jumped on a force plate installed on the floor. Test results have been compared with predictions based on the two abovementioned load modelling alternatives and a new methodology for modelling jumping loads has been proposed in order to reduce the difference between experimental and numerical results at high frequency range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta tesis se propone un nuevo modelo de carga para caracterizar los saltos de personas sobre estructuras y se estudia la influencia de las personas en las propiedades dinámicas de la estructura. En el estudio del comportamiento estructural de construcciones como gimnasios, salas de baile, estadios, auditorios o pasarelas peatonales sometidas a cargas producidas por un gran número de personas, se deben tener en cuenta las fuerzas dinámicas, lo cual implica el uso de modelos de cálculo más complejos y criterios de dimensionamiento con nuevos parámetros. Por ello, es necesario determinar a qué cargas van a estar sometidas este tipo de estructuras y cómo van a cambiar cuando se encuentren ocupadas por personas. En la primera parte del trabajo se presenta el problema de considerar las fuerzas dinámicas en el análisis de estructuras. Se indican los factores que influyeron en el interés por este tipo de estudios. Se exponen los objetivos de la tesis y se propone la metodología para conseguirlos. También en esta primera parte se describe el estado del arte. Se explican los modelos existentes de carga generada por saltos de personas y se hace un repaso de los principales autores y estudios sobre este tema. Por último se exponen algunas ideas sobre las modificaciones dinámicas que provoca la presencia de las personas en las estructuras. En la segunda parte de la tesis se explica el modelo de carga de saltos propuesta en este trabajo, donde se incluye una campaña de ensayos con saltos sobre una placa de carga. Se describen las estructuras de ensayo, un gimnasio y una losa que cubre un aljibe. Se detalla la identificación de las propiedades dinámicas de las estructuras, describiendo los ensayos correspondientes y los resultados de un Análisis Operacional Modal. Por último se presenta el modelo de elementos finitos de la estructura elegida para los ensayos. En la tercera y última parte del trabajo se comprueba la validez de los modelos de carga estudiados mediante la realización de ensayos dinámicos con personas saltando y la posterior comparación de los resultados experimentales con las simulaciones numéricas. Como último resultado se estudia la influencia de las personas en las propiedades dinámicas de la estructura. Para ello se utilizan los datos obtenidos mediante un ensayo con personas pasivas. ABSTRACT In this thesis, a new load model is proposed to characterize people jumping on structures and the influence of people in the dynamic properties of the structure is studied. In the study of the structural behavior of buildings such as gymnasiums, dance halls, stadiums, auditoriums or footbridges subjected to loads generated by crowd, dynamic forces must take into account, which involves the use of more complex calculation models and dimensioning criteria with new parameters. Therefore, it is necessary to determine these dynamic loads and how structures will change when they are occupied by people. In the first part of the work the problem of considering the dynamic forces in the analysis of structures is presented. The factors that influence on the interest in this type of study are indicated. The objectives of the thesis are presented and also the proposed methodology in order to achieve them. In this first part the state of the art is described. Existing jumping load models are explained and a review of the main authors and studies on this subject is done. Finally some ideas about the dynamic changes caused by the presence of people in the structures are exposed. In the second part of the thesis the proposed jumping load model is explained, including jump tests on a force plate. Test structures, a gym and a concrete slab are described. Dynamic properties identification of the test structures is detailed with the corresponding tests and Operational Modal Analysis results. Finally, a finite element model of the structure chosen for the tests is presented. In the third part of the work, the studied jump load models are validated by performing dynamic testing with people jumping and the subsequent comparison of experimental results with numerical simulations. As a last result, the influence of people on the dynamic properties of the structure is checked. For this purpose, obtained data from a test with passive people are used.