54 resultados para Crop water needs
em Universidad Politécnica de Madrid
Resumo:
All crop models, whether site-specific or global-gridded and regardless of crop, simulate daily crop transpiration and soil evaporation during the crop life cycle, resulting in seasonal crop water use. Modelers use several methods for predicting daily potential evapotranspiration (ET), including FAO-56, Penman-Monteith, Priestley-Taylor, Hargreaves, full energy balance, and transpiration water efficiency. They use extinction equations to partition energy to soil evaporation or transpiration, depending on leaf area index. Most models simulate soil water balance and soil-root water supply for transpiration, and limit transpiration if water uptake is insufficient, and thereafter reduce dry matter production. Comparisons among multiple crop and global gridded models in the Agricultural Model Intercomparison and Improvement Project (AgMIP) show surprisingly large differences in simulated ET and crop water use for the same climatic conditions. Model intercomparisons alone are not enough to know which approaches are correct. There is an urgent need to test these models against field-observed data on ET and crop water use. It is important to test various ET modules/equations in a model platform where other aspects such as soil water balance and rooting are held constant, to avoid compensation caused by other parts of models. The CSM-CROPGRO model in DSSAT already has ET equations for Priestley-Taylor, Penman-FAO-24, Penman-Monteith-FAO-56, and an hourly energy balance approach. In this work, we added transpiration-efficiency modules to DSSAT and AgMaize models and tested the various ET equations against available data on ET, soil water balance, and season-long crop water use of soybean, fababean, maize, and other crops where runoff and deep percolation were known or zero. The different ET modules created considerable differences in predicted ET, growth, and yield.
Resumo:
Actualmente la agricultura cubana, por ser un sector estratégico en la economía del país, incorpora en su desarrollo y gestión las energías renovables como criterio básico para su viabilidad futura. Sin embargo existen un número de problemas que limitan el desarrollo de estas fuentes energéticas en Cuba, entre los que se encuentran el conocimiento incompleto de su potencial de utilización. Por esta razón, la presente investigación tiene como objetivo la maximización de la superficie regada de un cultivo dado y la determinación del volumen de regulación mínimo, usando una aerobomba tipo, en condiciones ambientales dadas. Se desarrolla una metodología para predecir la máxima potencialidad de las aerobombas para un sistema de riego localizado, basada en el cálculo del balance diario entre las necesidades de agua del cultivo y la disponibilidad de agua. Mediante un ejemplo que ilustra el uso de esta metodología en el cultivo de tomate (Solanum lycopersicum L. var. FL - 5) bajo invernadero en Ciego de Ávila, Cuba, se hace una descripción de los elementos de la instalación propuesta para el suministro de agua por parte de la aerobomba. Se estudiaron varios factores, tales como la serie de velocidad del viento trihoraria ( h V3 , m s-1) para un año medio de viento y para un año medio de poco viento; el caudal suministrado por la aerobomba en función de la altura de elevación ( H , m); y la evapotranspiración diaria del cultivo en invernadero en función de la fecha de siembra. A partir de los factores mencionados se determinaron los volúmenes de agua mensuales necesarios para el riego ( r D , m3 ha-1), la capacidad del depósito de almacenamiento ( dep. V , m3), así como las áreas máximas regables ( r A , ha) para cada variante. Los resultados muestran que el período óptimo de bombeo eólico para el riego del cultivo de tomate en invernadero bajo las condiciones ambientales estudiadas es de noviembre a febrero, y que los factores que más influyen en la superficie que se puede regar con el bombeo eólico son la fecha de plantación y el volumen de depósito. Abstract Currently Cuban agriculture, as a strategic sector in the economy of the country, incorporates in its development and renewable energy management as a basic criterion for its future viability. However, there are a number of problems that limit the development of these energy sources in Cuba, among which are the incomplete knowledge of their potential use. For this reason, this research aims at maximizing the irrigated area of a given culture and determination of minimum control volume, using a type Windpump in given environmental conditions. We develop a methodology to predict the maximum potential of windmills for irrigation system, based on the daily balance calculation between the crop water needs and water availability. Through an example that illustrates the use of this methodology in the cultivation of tomato (Solanum lycopersicum L. var. FL - 5) under greenhouse in Ciego de Avila, Cuba, is a description of the elements of the proposed facility to supply water from the windmill. We studied several factors such as the number of trihoraria wind speed ( h V3 , m s- 1) for an average wind year and an average year with little wind, the flow supplied by the windmill depending on the lift height ( H , m) and daily crop evapotranspiration in greenhouse based on planting date. From the above factors were determined monthly water volumes needed for irrigation ( r D , m3 ha-1), the storage tank capacity ( dep. V , m3) and peak areas irrigated ( r A , ha) for each variant. The results show that the optimal period wind pumping for irrigation of greenhouse tomato crop under the environmental conditions studied is from November to February, and that the factors that influence the surface that can be irrigated with wind pumping are planting date and amount of deposit.
Resumo:
El presente trabajo aborda el aprovechamiento de algunos subproductos agrícolas (bagazo de maguey y fibra de coco) y forestales (corteza de pino) en el Estado de Oaxaca (Sur de México). El objetivo principal se centra en localizar, cuantificar y caracterizar estos con vistas a su aplicación como sustratos o componentes de sustratos en cultivos ornamentales, forestales y hortícolas, y a su uso como enmiendas en cultivos tipo. Así mismo se persigue reducir el uso de la turba y la tierra de monte como sustratos mayoritarios en la actualidad. Para la localización de los subproductos se utilizaron los datos de los registros parcelarios de los productores de coco para la obtención de copra (generadores de fibra de coco) de la región costa y de los productores de mezcal (generadores del residuo de bagazo de maguey) de la región valles centrales, así como las ubicaciones de los aserraderos forestales en el Estado de Oaxaca. Se emplea un Sistema de Información Geográfica (SIG) con una cartografía digitalizada de los elementos del medio (clima, geología y suelo), de los cultivos generadores (bagazo de maguey, fibra de coco y corteza de pino), de la agricultura protegida como receptora (tomate) y de la agricultura extensiva con cultivos receptores de enmienda (café, hule, limón, mango, palma de coco y maguey). La producción anual de los residuos se cartografía y cuantifica con los siguientes resultados: bagazo de maguey 624.000 t, fibra de coco 86.000 m3 y 72.000 t de corteza de pino. Mediante el estudio de las características de los suelos de los cultivos receptores y de los requerimientos de materia orgánica de cada cultivo se calcularon las necesidades totales de materia orgánica para cada suelo. Los resultados de las cantidades globales para cada cultivo en todo el Estado muestran una necesidad total de 3.112.000 t de materia orgánica como enmienda. Con los datos obtenidos y a través de un algoritmo matemático se realiza una propuesta de localización de dos plantas de compostaje (de bagazo de maguey y fibra de coco) y cuatro plantas de compostaje de corteza de pino. Con el fin de conocer los subproductos a valorizar como sustrato o componente de sustrato se caracteriza su composición física‐química, siguiendo Normas UNE‐EN, y se analizan mediante Resonancia Magnética Nuclear (RMN). Para el acondicionamiento de bagazo de maguey y la corteza de pino se realizaron ensayos de compostaje. Al final de 241 días la temperatura y la humedad de ambos procesos se encontraban en los rangos recomendados, indicando que los materiales estaban estabilizados y con calidad para ser utilizados como sustrato o componente de sustrato. Para la fibra de coco se realizó el proceso de molienda en seco de conchas de coco provenientes de la comunidad de Río Grande Oaxaca (Principal zona productora de copra en Oaxaca). Posteriormente se emplean los materiales obtenidos como componentes para sustratos de cultivo. Se estudia el compost de bagazo de maguey y siete mezclas; el compost de corteza de pino y ocho mezclas y la fibra de coco con tres mezclas. Estos sustratos alternativos permiten obtener mezclas y reducir el uso de la tierra de monte, turba, arcilla expandida y vermiculita, siendo por tanto una alternativa sostenible para la producción en invernadero. Se elaboraron mezclas especificas para el cultivo de Lilium hibrido asiático y oriental (siete mezclas), sustratos eco‐compatibles para cultivo de tomate (nueve mezclas), para la producción de planta forestal (siete mezclas) y para la producción de plántula hortícola (ocho mezclas). Como resultados más destacados del bagazo de maguey, corteza de pino y las mezclas obtenidas se resume lo siguiente: el bagazo de maguey, con volúmenes crecientes de turba (20, 30, 50 y 60 %) y la corteza de pino, con volúmenes de turba 40 y 60%, presentan valores muy recomendados de porosidad, capacidad de aireación, capacidad de retención de humedad y equilibrio agua‐aire. Para la fibra de coco, la procedente de Río Grande presenta mejor valoración que la muestra comercial de fibra de coco de Morelos. Por último se llevó a cabo la evaluación agronómica de los sustratos‐mezclas, realizando cinco experimentos por separado, estudiando el desarrollo vegetal de cultivos tipo, que se concretan en los siguientes ensayos: 1. Producción de Lilium asiático y oriental en cama para flor de corte; 2. Producción de Lilium oriental en contenedor para flor de corte; 3. Producción de plántula forestal (Pinus greggii E y Pinus oaxacana M); 4. Producción de tomate (Solanum lycopersicum L) y 5. Producción de plántula de tomate en semillero (Solanum lycopersicum L). En relación a la producción de Lilium hibrido asiático en cama los sustratos corteza de pino (CPTU 80:20 v/v), corteza de pino + sustrato comercial (CPSC 80:20 v/v) y corteza de pino+turba+arcilla expandida+vermiculita (CPTAEV2 30:40:15:15 v/v) presentan los mejores resultados. Dichos sustratos también presentan adecuados resultados para Lilium hibrido oriental con excepción de la corteza de pino + turba (CPTU 80:20 v/v). En la producción de Lilium hibrido oriental en contenedor para flor de corte, además de los sustratos de CPSC y CPTAEV2, la mezcla de corteza de pino+turba+arcilla expandida+vermiculita (CPTAEV 70:20:5:5 v/v) manifestó una respuesta favorable. En el ensayo de producción de plántulas de Pinus greggii E y Pinus oaxacana Mirov, las mezclas con corteza de pino+turba+arcilla expandida+vermiculita (CPTAEV2 30:40:15:15 v/v) y bagazo de maguey turba+arcilla expandida+vermiculita (BMTAEV2 30:60:5:5 v/v) son una alternativa que permite disminuir el empleo de turba, arcilla expandida y vermiculita, en comparación con el sustrato testigo de turba+arcilla expandida+vermiculita (TAEV 60:30:10 v/v). En la producción de tomate (Solanum lycopersicum L) frente a la utilización actual del serrín sin compostar (SSC), las mezclas alternativas de bagazo de maguey+turba (BMT 70:30 v/v), fibra de coco de Río Grande (FCRG 100v/v) y corteza de pino+turba (CPT 70:30 v/v), presentaron los mejores resultados en rendimientos. Así mismo, en la producción de plántulas de tomate las dos mezclas alternativas de bagazo de maguey+turba+ arcilla expandida+vermiculita (BMTAEV5 50:30:10:10 v/v) y (BMTAEV6 40:40:10:10 v/v) presentaron mejores resultados que los obtenidos en la mezcla comercial (Sunshine 3), mayoritariamente utilizada en México en la producción de plántula de tomate y hortícola. ABSTRACT This paper addresses the use of some agricultural products (maguey bagasse and coconut fiber) and forestry (pine bark) in the State of Oaxaca (southern Mexico). The principal purpose is to locate, quantify and characterize these with the idea of applying them as substrates or substrate components in ornamental crops, forestry, horticultural, and their use as crop amendments. On the other hand, the reduction of peat and forest soil as main substrates is pursued. For the location of the products, registry parcel data from copra producers (coconut fiber generators) of the coastal region and mescal producers (maguey bagasse residue generators) of the central valleys region, as well as the locations of forest mills in the State of Oaxaca. A Geographic Information System (GIS) with digital mapping of environmental factors (climate, geology and soil), crop generators of residues (maguey bagasse, coconut and pine bark) receptors of amendments such as protected agriculture (tomato) and extensive agriculture crops (coffee, rubber, lemon, mango, coconut and agave). The annual production of waste is mapped and quantified with the following results: 624,000t maguey bagasse, coconut fiber 72,000 m3 and 86,000 t of pine bark. Through the study of receiving crops soils properties of and organic matter requirements of each crop, total needs of organic matter for each soil were estimated. The results of the total quantities for each crop across the state show a total of 3,112,000 t of organic matter needed as amendment. Using that data and a mathematical algorithm, the location of two composting plants (agave bagasse and coconut fiber) and four composting plants pine bark was proposed. In order to know the by‐products that were going to be used as substrates or substrate components, their physical‐chemical composition was analyzed following UNE‐EN technics. Furthermore they were analyzed by Nuclear Magnetic Resonance (NMR). For conditioning of maguey bagasse and pine bark, composting essays were conducted. At the end of 241 days the temperature and humidity of both processes were at the recommended ranges, indicating that the materials were stabilized and had reached the quality to be used as a substrate or substrate component. Coconut shells from the community of Rio Grande Oaxaca (Main copra producing area in Oaxaca) were put through a process of dry milling. Subsequently, the obtained materials were used as components for growing media. We studied the maguey bagasse compost and seven mixtures; the pine bark compost and eight blends and coconut fiber with three mixtures. These alternative substrates allow obtaining mixtures and reduce the use of forest soil, peat, vermiculite and expanded clay, making it a sustainable alternative for greenhouse production. Specific mixtures were prepared for growing Lillium, Asian and eastern hybrids (seven blends), eco‐compatible substrates for tomato (nine mixtures), for producing forest plant (seven mixtures) and for the production of horticultural seedlings (eight mixtures). Results from maguey bagasse, pine bark and mixtures obtained are summarized as follows: the maguey bagasse, with increasing volumes of peat (20, 30, 50 and 60%) and pine bark mixed with 40 and 60% peat by volume, have very recommended values of porosity, aeration capacity, water retention capacity and water‐air balance. Coconut fiber from Rio Grande had better quality than commercial coconut fiber from Morelos. Finally the agronomic evaluation of substrates‐mixtures was carried out conducting five experiments separately: 1. Production of Asiatic and Eastern Lilium in bed for cut flower, 2. Production of oriental Lillium in container for cut flower, 3.Production of forest seedlings (Pinus greggii E and Pinus oaxacana M), 4. Production of tomato (Solanum lycopersicum L) and 5. Tomato seedling production in seedbed (Solanum lycopersicum L). In relation to the production of hybrid Asian Lilium in bed, pine bark substrates (CPTU 80:20 v/v), pine bark + commercial substrate (CPSC 80:20 v/v) and pine bark + peat + expanded clay + vermiculite (CPTAEV2 30:40:15:15 v/v) showed the best results. Such substrates also have adequate results for Lilium Oriental hybrid except pine bark + peat (CPTU 80:20 v / v). In the production of Lilium oriental hybrid container for cut flower, besides the CPSC and CPTAEV2 substrates, the mixture of pine bark + peat + vermiculite expanded clay (CPTAEV 70:20:5:5 v / v) showed a favorable response. In the production of Pinus greggii E and Pinus oaxacana Mirov seedlings trial, mixtures with pine bark + peat + expanded clay + vermiculite (CPTAEV2 30:40:15:15 v/v) and maguey bagasse+ peat+ expanded clay + vermiculite (BMTAEV2 30:60:5:5 v / v) are an alternative which allows reducing the use of peat, vermiculite and expanded clay in comparison with the control substrate made of peat + expanded clay+ vermiculite (60:30 TAEV: 10 v/v). In the production of tomato (Solanum lycopersicum L), alternative mixes of maguey bagasse + peat (BMT 70:30 v/v), coconut fiber from Rio Grande (FCRG 100 v / v) and pine bark + peat (CPT 70:30 v / v) showed the best results in yields versus the current use of sawdust without compost (SSC). Likewise, in the production of tomato seedlings of the two alternative mixtures maguey bagasse + peat expanded clay + vermiculite (BMTAEV5 50:30:10:10 v/v) and (BMTAEV6 40:40:10:10 v/v) had better results than those obtained in the commercial mixture (Sunshine 3), mainly used in Mexico in tomato seedling production and horticulture.
Resumo:
Crop irrigation is a major consumer of energy. Only a few countries are self-sufficient in conventional non-renewable energy sources. Fortunately, there are renewable ones, such as wind, which has experienced recent developments in the area of power generation. Wind pumps can play a vital role in irrigation projects in remote farms. A methodology based on daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. For this purpose, several factors were included: three-hourly wind velocity (W3 h, m/s), flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration as a function of crop planting date. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. An example is given illustrating the use of this methodology on tomato crop (Lycopersicon esculentum Mill.) under greenhouse at Ciego de Ávila, Cuba. In this case two different W3 h series (average and low wind year), three different H values and five tomato crop planting dates were considered. The results show that the optimum period of wind-pump driven irrigation is with crop plating in November, recommending a 5 m3 volume tank for cultivated areas around 0.2 ha when using wind pumps operating at 15 m of height elevation.
Resumo:
Crop production has a great contribution to water use and abstraction. Sugar beet is an important crop in irrigated land in Spain and covers 70.000 Ha. Crop and resources management are key factors for a sustainable agriculture. The aim of this work is to mode the sugar beet crop growth and water consumption in order to quantify crop water use and virtual water content in different growing conditions.
Resumo:
A methodology based on daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. For this purpose, several factors were included: three-hourly wind velocity (W3 h, m/s), flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration as a function of crop planting date. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors.
Resumo:
In many arid or semi-arid Mediterranean regions, agriculture is dependent on irrigation. When hydrological drought phenomena occur, farmers suffer from water shortages, incurring important economic losses. Yet, there is not agricultural insurance available for lack of irrigation water. This work attempts to evaluate hydrological drought risk and its economic impact on crop production in order to provide the basis for the design of drought insurance for irrigated arable crops. With this objective a model that relates water availability with expected yields is developed. Crop water requirements are calculated from evapotranspiration, effective rainfall and soil water balance. FAO?s methodology and AquaCrop software have been used to establish the relationship between water allocations and crop yields. The analysis is applied to the irrigation zone ?Riegos de Bardenas?, which is located in the Ebro river basin, northeast Spain, to the main arable crops in the area. Results show the fair premiums of different hydrological drought insurance products. Whole-farm insurance or irrigation district insurance should be preferable to crop specific insurance due to the drought management strategies used by farmers.
Resumo:
In the last decade, research on irrigation has mainly been aimed at reducing crop water consumption. In arid and semi-arid environments, in relation to the limited water resources, the use of low quality water in agriculture has also been investigated in order to detect their effects on soil physical properties and on crop production. More recently, even the reduction of energy consumption in agriculture, as well as the effects of external factors, climate change and agricultural policies, have been major research interests. All these objectives have been considered in the papers included in this special issue. However, in the last years, approaches aimed at reducing crop water requirements have significantly changed. Remote sensing with satellites or unmanned vehicles, and vegetation spectral measurements, among others, represent in fact the newest frontier of existing technologies. Knowledge of soil hydraulic properties, often forgotten because of the difficulty of their estimation, can also be considered as a new way to reduce water consumption.
Resumo:
A study of the assessment of the irrigation water use has been carried out in the Spanish irrigation District “Río Adaja” that has analyzed the water use efficiency and the water productivity indicators for the main crops for three years: 2010-2011, 2011-2012 and 2012-2013. A soil water balance model was applied taking into ccount climatic data for the nearby weather station and soil properties. Crop water requirements were calculated by the FAO Penman- Monteith with the application of the dual crop coefficient and by considering the readily vailable soil water content (RAW) concept. Likewise, productivity was measured by the indexes: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS), the water productivity (WP), the evapotranspiration water productivity (ETWP), and the irrigation water productivity (IWP. The results show that in most crops deficit irrigation was applied (ARIS<1) in the first two years however, the IWP improved. This was higher in 2010-2011 which corresponded to the highest effective precipitation Pe. In general, the IWP (€.m-3) varied amongcrops but crops such as: onion (4.14, 1.98 and 2.77 respectively for the three years), potato (2.79, 1.69 and 1.62 respectively for the three years), carrot (1.37, 1.70 and 1.80 respectively for the three years) and barley (1.21, 1.16 and 0.68 respectively for the three years) showed the higher values. Thus, it is highlighted the y could be included into the cropping pattern which would maximize the famer’s gross income in the irrigation district.
Resumo:
Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions – central Chile, southwestern US, and south-central Spain – where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.
Resumo:
The fruit maturation stage is considered the optimal phenological stage for implementing water deficitin jujube (Zizyphus jujuba Mill.), since a low, moderate or severe water deficit at this time has no effect onyield, fruit volume or eating quality. However, no information exists at fruit water relations level on themechanisms developed by Z. jujuba to confront drought. The purpose of the present study was to increaseour understanding of the relationship between leaf and fruit water relations of jujube plants under dif-ferent irrigation conditions during fruit maturation, paying special attention to analysing whether fruitsize depends on fruit turgor. For this, adult jujube trees (cv. Grande de Albatera) were subjected to fiveirrigation treatments. Control plants (T0) were irrigated daily above their crop water requirements inorder to attain non-limiting soil water conditions in 2012 and 2013. T1 plants were subjected to deficitirrigation throughout the 2012 season, according to the criteria frequently used by the growers in thearea. T2 (2012), T3 and T4 (2013) were irrigated as T0 except during fruit maturation, in which irrigationwas withheld for 32, 17 and 24 days, respectively. The results indicated that the jujube fruit maturationperiod was clearly sensitive to water deficit. During most of this stage water could enter the fruits viathe phloem rather than via the xylem. From the beginning of water withholding to when maximumwater stress levels were achieved, fruit and leaf turgor were maintained in plants under water deficit.However, a direct relation between turgor and fruit size was not found in jujube fruits, which could bedue to an enhancement of a cell elasticity mechanism (elastic adjustment) which maintains fruit turgorby reducing fruit cells size or to the fact that jujube fruit growth depends on the fruit growth-effectiveturgor rather than just turgor pressure.
Resumo:
The impact of climate change and its relation with evapotranspiration was evaluated in the Duero River Basin (Spain). The study shows the possible future situations 50 years from now from the reference evapotranspiration (ETo). The maximum temperature (Tmax), minimum temperature (Tmin), dew point (Td), wind speed (U) and net radiation (Rn) trends during the 1980-2009 period were obtained and extrapolated with the FAO-56 Penman- Montheith equation to estimate ETo. Changes in stomatal resistance in response to increases in CO2 were also considered. Four scenarios were done, considering the concentration of CO2 and the period analyzed (annual or monthly). The scenarios studied showed the changes in ETo as a consequence of the annual and monthly trends in the variables Tmax, Tmin, Td, U and Rn with current and future CO2 concentrations (372 ppm and 550 ppm). The future ETo showed increases between 118 mm (11%) and 55 mm (5%) with respect to the current situation of the river basin at 1042 mm. The months most affected by climate change are May, June, July, August and September, which also coincide with the maximum water needs of the basin?s crops
Resumo:
The impact of climate change and its relation with evapotranspiration was evaluated in the Duero River Basin (Spain). The study shows possible future situations 50 yr from now from the reference evapotranspiration (ETo). The maximum temperature (Tmax), minimum temperature (Tmin), dew point (Td), wind speed (U) and net radiation (Rn) trends during the 1980–2009 period were obtained and extrapolated with the FAO-56 Penman-Montheith equation to estimate ETo. Changes in stomatal resistance in response to increases in CO2 were also considered. Four scenarios were done, taking the concentration of CO2 and the period analyzed (annual or monthly) into consideration. The scenarios studied showed the changes in ETo as a consequence of the annual and monthly trends in the variables Tmax, Tmin, Td, U and Rn with current and future CO2 concentrations (372 ppm and 550 ppm). The future ETo showed increases between 118 mm (11 %) and 55 mm (5 %) with respect to the current situation of the river basin at 1042 mm. The months most affected by climate change are May, June, July, August and September, which also coincide with the maximum water needs of the basin’s crops
Resumo:
Solar radiation is the most important source of renewable energy in the planet; it's important to solar engineers, designers and architects, and it's also fundamental for efficiently determining irrigation water needs and potential yield of crops, among others. Complete and accurate solar radiation data at a specific region are indispensable. For locations where measured values are not available, several models have been developed to estimate solar radiation. The objective of this paper was to calibrate, validate and compare five representative models to predict global solar radiation, adjusting the empirical coefficients to increase the local applicability and to develop a linear model. All models were based on easily available meteorological variables, without sunshine hours as input, and were used to estimate the daily solar radiation at Cañada de Luque (Córdoba, Argentina). As validation, measured and estimated solar radiation data were analyzed using several statistic coefficients. The results showed that all the analyzed models were robust and accurate (R2 and RMSE values between 0.87 to 0.89 and 2.05 to 2.14, respectively), so global radiation can be estimated properly with easily available meteorological variables when only temperature data are available. Hargreaves-Samani, Allen and Bristow-Campbell models could be used with typical values to estimate solar radiation while Samani and Almorox models should be applied with calibrated coefficients. Although a new linear model presented the smallest R2 value (R2 = 0.87), it could be considered useful for its easy application. The daily global solar radiation values produced for these models can be used to estimate missing daily values, when only temperature data are available, and in hydrologic or agricultural applications.
Resumo:
El objetivo del presente trabajo es determinar la localización óptima de una planta de producción de 30.000 m3/año de bioetanol a partir de tubérculos de pataca (Helianthus tuberosus L.) cultivada en regadío, en tierras de barbecho de la Cuenca Hidrográfica del Duero (CH Duero). Inicialmente se elaboró, a partir de datos bibliográficos, un modelo de producción de pataca en base a una ecuación de regresión que relaciona datos experimentales de rendimientos de variedades tardías con variables agroclimáticas. Así se obtuvo una función de producción basada en la cantidad de agua disponible (precipitación efectiva + dosis de riego) y en la radiación global acumulada en el periodo brotación‐senescencia del cultivo. A continuación se estima la superficie potencial de cultivo de pataca en la CH Duero a partir de la superficie arable en regadío cartografiada por el Sistema de Ocupación del Suelo (SIOSE), a la cual se le aplican, en base a los requerimientos del cultivo, unas restricciones climáticas, edafológicas, topográficas y logísticas mediante el uso de Sistemas de Información Geográfica (SIG). La proporción de superficie de regadío restringida se cuantifica a escala municipal con el fin de calcular la superficie de barbecho en regadío apta para el cultivo de pataca. A partir de las bases de datos georreferenciadas de precipitación, radiación global, y la dotación de agua para el riego de cultivos no específicos establecida en el Plan Hidrológico de la Cuenca del Duero a escala comarcal, se estimó la producción potencial de tubérculos de pataca sobre la superficie de barbecho de regadío según el modelo de producción elaborado. Así, en las 53.360 ha de barbecho en regadío aptas para el cultivo de pataca se podrían producir 3,8 Mt de tubérculos al año (80 % de humedad) (761.156 t ms/año) de los que se podría obtener 304.462 m3/año de bioetanol, considerando un rendimiento en la transformación de 12,5 kg mf/l de etanol. Se estiman los costes de las labores de cultivo de pataca así como los costes de la logística de suministro a una planta de transformación considerando una distancia media de transporte de 25 km, en base a las hojas de cálculo de utilización de aperos y maquinaria agrícola oficiales del Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). Considerando el balance de costes asociados a la producción de bioetanol (costes de transformación, distribución y transporte del producto, costes estructurales de la planta, ahorro de costes por la utilización de las vinazas generadas en el proceso como fertilizante y un beneficio industrial), se ha estimado que el coste de producción de bioetanol a partir de tubérculos de pataca asciende a 61,03 c€/l. Se calculan los beneficios fiscales para el Estado por el cultivo de 5.522 ha de pataca que suministren la materia prima necesaria para una planta de bioetanol de 30.000 m3/año, en concepto de cotizaciones a la Seguridad Social de los trabajadores, impuestos sobre el valor añadido de los productos consumidos, impuesto sobre sociedades y ahorro de las prestaciones por desempleo. Se obtuvieron unos beneficios fiscales de 10,25 c€ por litro de bioetanol producido. El coste de producción de bioetanol depende del rendimiento de tubérculos por hectárea y de la distancia de transporte desde las zonas de producción de la materia prima hasta la planta. Se calculó la distancia máxima de transporte para que el precio de coste del bioetanol producido sea competitivo con el precio de mercado del bioetanol. Como resultado se determinó que el precio del bioetanol (incluido un beneficio industrial del 15%) de la planta sería igual o inferior al precio de venta en el mercado (66,35 c€/l) con una distancia máxima de transporte de 25 km y un rendimiento mínimo del cultivo de 60,1 t mf/ha. Una vez conocido el área de influencia de la planta según la distancia de transporte máxima, se determinó la localización óptima de la planta de producción de bioetanol mediante un proceso de ubicación‐asignación realizado con SIG. Para ello se analizan los puntos candidatos a la ubicación de la planta según el cumplimiento de unos requerimientos técnicos establecidos (distancia a fuentes de suministro eléctrico y de recursos hídricos, distancia a estaciones de ferrocarril, distancia a núcleos urbanos y existencia de Espacios Naturales Protegidos) que minimizan la distancia de transporte maximizando la cantidad de biomasa disponible según la producción potencial estimada anteriormente. Por último, la superficie destinada al cultivo de pataca en el área de influencia de la planta se determina en base a un patrón de distribución del cultivo alrededor de una agroindustria. Dicho patrón se ha obtenido a partir del análisis del grado de ocupación del cultivo de la remolacha en función de la distancia de transporte a la planta azucarera de Miranda de Ebro (Burgos). El patrón resultante muestra que la relación entre el grado de ocupación del suelo por el cultivo y la distancia de transporte a la planta siguen una ecuación logística. La localización óptima que se ha obtenido mediante la metodología descrita se ubica en el municipio leonés de El Burgo Ranero, donde la producción potencial de tubérculos de pataca en la superficie de barbecho situada en un radio de acción de 25 km es de 375.665 t mf/año, superando las 375.000 t mf requeridas anualmente por la planta de bioetanol. ABSTRACT Jerusalem artichoke (Helianthus tuberosus L.) is a harsh crop with a high potential for biomass production. Its main use is related to bioethanol production from the carbohydrates, inulin mainly, accumulated in its tubers at the end of the crop cycle. The aerial biomass could be used as solid biofuel to provide energy to the bioethanol production process. Therefore, Jerusalem artichoke is a promising crop as feedstock for biofuel production in order to achieve the biofuels consumption objectives established by the Government of Spain (PER 2011‐2020 and RDL 4/2013) and the European Union (Directive 2009/28/EC). This work aims at the determination of the optimal location for a 30,000 m3/year bioethanol production plant from Jerusalem artichoke tubers in the Duero river basin. With this purpose, a crop production model was developed by means of a regression equation that relates experimental yield data of late Jerusalem artichoke varieties with pedo‐climatic parameters from a bibliographic data matrix. The resulting crop production model was based on the crop water availability (including effective rainfall and irrigation water supplied) and on global radiation accumulated in the crop emergence‐senescence period. The crop potential cultivation area for Jerusalem artichoke in the Duero basin was estimated using the georeferenced irrigated arable land from the “Sistema de Ocupación del Suelo” (SIOSE) of Spain. Climatic, soil, slope and logistic restrictions were considered by means of Geographic Information Systems (GIS). The limited potential growing area was then applied to a municipality scale in order to calculate the amount of fallow land suitable for Jerusalem artichoke production. Rainfall and global radiation georeferenced layers as well as data of irrigation water supply for crop production (established within the Duero Hydrologic Plan) were use to estimate the potential production of Jerusalem artichoke tubers in the suitable fallow land according to the crop production model. As a result of this estimation, there are 53,360 ha of fallow land suitable for Jerusalem artichoke production in the Duero basin, where 3.8 M t fm/year could be produced. Considering a bioethanol processing yield of 12.5 kg mf per liter of bioethanol, the above mentioned tuber potential production could be processed in 304,462 m3/year of bioethanol. The Jerusalem crop production costs and the logistic supply costs (considering an average transport distance of 25 km) were estimated according to official agricultural machinery cost calculation sheets of the Minister of Agriculture of Spain (MAGRAMA). The bioethanol production cost from Jerusalem artichoke tubers was calculated considering bioethanol processing, transport and structural costs, industrial profits as well as plant cost savings from the use of vinasses as fertilizer. The resulting bioetanol production cost from Jerusalem artichoke tubers was 61.03 c€/l. Additionally, revenues for the state coffers regarding Social Security contributions, added value taxes of consumed raw materials, corporation tax and unemployment benefit savings due to the cultivation of 5,522 ha of Jerusalem artichoke for the 30.000 m3/year bioethanol plant supply were calculated. The calculated revenues amounted to 10.25 c€/l. Bioethanol production cost and consequently the bioethanol plant economic viability are strongly related to the crop yield as well as to road transport distance from feedstock production areas to the processing plant. The previously estimated bioethanol production cost was compared to the bioethanol market price in order to determine the maximum supply transport distance and the minimum crop yield to reach the bioethanol plant economic viability. The results showed that the proposed plant would be economically viable at a maximum transport distance of 25 km and at a crop yield not less than 60.1 t fm/ha. By means of a GIS location‐allocation analysis, the optimal bioethanol plant location was determined. Suitable candidates were detected according to several plant technical requirements (distance to power and water supply sources, distance to freight station, and distance to urban areas and to Natural Protected Areas). The optimal bioethanol plant location must minimize the supply transport distance whereas it maximizes the amount of available biomass according to the previously estimated biomass potential production. Lastly, the agricultural area around the bioethanol plant finally dedicated to Jerusalem artichoke cultivation was planned according to a crop distribution model. The crop distribution model was established from the analysis of the relation between the sugar beet (Beta vulgaris L.) cropping area and the road transport distance from the sugar processing plant of Miranda de Ebro (Burgos, North of Spain). The optimal location was situated in the municipality of ‘El Burgo Ranero’ in the province of León. The potential production of Jerusalem artichoke tubers in the fallow land within 25 km distance from the plant location was 375,665 t fm/year, which exceeds the amount of biomass yearly required by the bioethanol plant.