3 resultados para Critical Thickness

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report growth of InAs/GaAs quantum dots (QDs) by molecular beam epitaxy with low density of 2 μm−2 by conversion of In nanocrystals deposited at low temperatures. The total amount of InAs used is about one monolayer, which is less than the critical thickness for conventional Stranski–Krastanov QDs. We also demonstrate the importance of the starting surface reconstruction for obtaining uniform QDs. The QD emission wavelength is easily tunable upon post-growth annealing with no wetting layer signal visible for short anneals. Microphotoluminescence measurements reveal well separated and sharp emission lines of individual QDs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the sensitivity of the superconducting critical temperature (TC) to layer thickness, as well as on TC reproducibility in Mo/Au bilayers. Resistivity measurements on samples with a fixed Au thickness (dAu) and Mo thickness (dMo) ranging from 50 to 250 nm, and with a fixed dMo and different dAu thickness are shown. Experimental data are discussed in the framework of Martinis model, whose application to samples with dAu above their coherence length is analysed in detail. Results show a good coupling between normal and superconducting layers and excellent TC reproducibility, allowing to accurately correlate Mo layer thickness and bilayer TC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser Shock Processing (LSP) has been demonstrated as an emerging technique for the induction of RS’s fields in subsurface layers of relatively thick specimens. However, the LSP treatment of relatively thin specimens brings, as an additional consequence, the possible bending in a process of laser shock forming. This effect poses a new class of problems regarding the attainment of specified RS’s depth profiles in the mentioned type of sheets, and, what can be more critical, an overall deformation of the treated component. The analysis of the problem of LSP treatment for induction of tentatively through-thickness RS’s fields for fatigue life enhancement in relatively thin sheets in a way compatible with reduced overall workpiece deformation due to spring-back self-equilibration is envisaged in this paper. The coupled theoretical-experimental predictive approach developed by the authors has been applied to the specification of LSP treatments for achievement of RS's fields tentatively able to retard crack propagation on normalized specimens. A convergence between numerical code results and experimental results coming from direct RS's measurement is presented as a first step for the treatment of the normalized specimens under optimized conditions and verification of the crack retardation properties virtually induced.