6 resultados para Cosmological constants

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AnewRelativisticScreenedHydrogenicModel has been developed to calculate atomic data needed to compute the optical and thermodynamic properties of high energy density plasmas. The model is based on anewset of universal screeningconstants, including nlj-splitting that has been obtained by fitting to a large database of ionization potentials and excitation energies. This database was built with energies compiled from the National Institute of Standards and Technology (NIST) database of experimental atomic energy levels, and energies calculated with the Flexible Atomic Code (FAC). The screeningconstants have been computed up to the 5p3/2 subshell using a Genetic Algorithm technique with an objective function designed to minimize both the relative error and the maximum error. To select the best set of screeningconstants some additional physical criteria has been applied, which are based on the reproduction of the filling order of the shells and on obtaining the best ground state configuration. A statistical error analysis has been performed to test the model, which indicated that approximately 88% of the data lie within a ±10% error interval. We validate the model by comparing the results with ionization energies, transition energies, and wave functions computed using sophisticated self-consistent codes and experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently a new type of cosmological singularity has been postulated for infinite barotropic index w in the equation of state p = wρ of the cosmological fluid, but vanishing pressure and density at the singular event. Apparently the barotropic index w would be the only physical quantity to blow up at the singularity. In this talk we would like to discuss the strength of such singularities and compare them with other types. We show that they are weak singularities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the relation proposed by Weinberg in 1972, combining quantum and cosmological parameters, we prove that the self gravitational potential energy of any fundamental particle is a quantum, with physical properties independent of the mass of the particle. It is a universal quantum of gravitational energy, and its physical properties depend only on the cosmological scale factor R and the physical constants ℏ and c. We propose a modification of the Weinberg’s relation, keeping the same numerical value, but substituting the cosmological parameter H/c by 1/R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental methods based on single particle tracking (SPT) are being increasingly employed in the physical and biological sciences, where nanoscale objects are visualized with high temporal and spatial resolution. SPT can probe interactions between a particle and its environment but the price to be paid is the absence of ensemble averaging and a consequent lack of statistics. Here we address the benchmark question of how to accurately extract the diffusion constant of one single Brownian trajectory. We analyze a class of estimators based on weighted functionals of the square displacement. For a certain choice of the weight function these functionals provide the true ensemble averaged diffusion coefficient, with a precision that increases with the trajectory resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Jones-Wilkins-Lee (JWL) equation of state parameters for ANFO and emulsion-type explosives have been obtained from cylinder test expansion measurements. The calculation method comprises a new radial expansion function, with a non-zero initial velocity at the onset of the expansion in order to comply with a positive Gurney energy at unit relative volume, as the isentropic expansion from the CJ state predicts. The equations reflecting the CJ state conditions and the measured expansion energy were solved for the JWL parameters by a non-linear least squares scheme. The JWL parameters of thirteen ANFO and emulsion type explosives have been determined in this way from their cylinder test expansion data. The results were evaluated through numerical modelling of the tests with the LS-DYNA hydrocode; the expansion histories from the modelling were compared with the measured ones, and excellent agreement was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Mindlin plate with periodically distributed ribs patterns is analyzed by using homogenization techniques based on asymptotic expansion methods. The stiffness matrix of the homogenized plate is found to be dependent on the geometrical characteristics of the periodical cell, i.e. its skewness, plan shape, thickness variation etc. and on the plate material elastic constants. The computation of this plate stiffness matrix is carried out by averaging over the cell domain some solutions of different periodical boundary value problems. These boundary value problems are defined in variational form by linear first order differential operators on the cell domain and the boundary conditions of the variational equation correspond to a periodic structural problem. The elements of the stiffness matrix of homogenized plate are obtained by linear combinations of the averaged solution functions of the above mentioned boundary value problems. Finally, an illustrative example of application of this homogenization technique to hollowed plates and plate structures with ribs patterns regularly arranged over its area is shown. The possibility of using in the profesional practice the present procedure to the actual analysis of floors of typical buildings is also emphasized.