10 resultados para Corrosion resistant materials
em Universidad Politécnica de Madrid
Resumo:
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Resumo:
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Resumo:
Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies and the evaluation of the corresponding induced properties as material specific volume reduction at the surface, microhardness and wear resistance. Additional remarks on the improved character of the LSP technique over the traditional “shot peening” technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.
Resumo:
Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized. I.
Resumo:
This paper is focused on the problem of the chloride-induced corrosion of the rebar in reinforced concrete, with special application to the slabs and decks of the bridges. High superficial concentrations may be usual in these structures (marine environments or de-icing salts in roadway bridges, e.g.). Like any aggressive agent such as water, gases or other dissolved ions, chloride induced deterioration is very conditioned by possibilities of transport through concrete mass.
Resumo:
The paper presents some preliminary results of an ongoing research intended to qualify a highly resistant duplex stainless steel wire as prestressing steel and, gets on insight on (he wires' fracture micromechanism and residual stresses field. SEM fractographic analysis of the stainless steel wires indicates an anisotropic fracture behavior in tension, in presence of surface flaws, attributed to the residual stresses generated through the fabrication process. The residual stresses magnitude influences the damage tolerance, its knowledge being a key issue in designating/qualifying the wires as prestressing steels.
Resumo:
En el campo de la fusión nuclear y desarrollándose en paralelo a ITER (International Thermonuclear Experimental Reactor), el proyecto IFMIF (International Fusion Material Irradiation Facility) se enmarca dentro de las actividades complementarias encaminadas a solucionar las barreras tecnológicas que aún plantea la fusión. En concreto IFMIF es una instalación de irradiación cuya misión es caracterizar materiales resistentes a condiciones extremas como las esperadas en los futuros reactores de fusión como DEMO (DEMOnstration power plant). Consiste de dos aceleradores de deuterones que proporcionan un haz de 125 mA y 40 MeV cada uno, que al colisionar con un blanco de litio producen un flujo neutrónico intenso (1017 neutrones/s) con un espectro similar al de los neutrones de fusión [1], [2]. Dicho flujo neutrónico es empleado para irradiar los diferentes materiales candidatos a ser empleados en reactores de fusión, y las muestras son posteriormente examinadas en la llamada instalación de post-irradiación. Como primer paso en tan ambicioso proyecto, una fase de validación y diseño llamada IFMIFEVEDA (Engineering Validation and Engineering Design Activities) se encuentra actualmente en desarrollo. Una de las actividades contempladas en esta fase es la construcción y operación de una acelarador prototipo llamado LIPAc (Linear IFMIF Prototype Accelerator). Se trata de un acelerador de deuterones de alta intensidad idéntico a la parte de baja energía de los aceleradores de IFMIF. Los componentes del LIPAc, que será instalado en Japón, son suministrados por diferentes países europeos. El acelerador proporcionará un haz continuo de deuterones de 9 MeV con una potencia de 1.125 MW que tras ser caracterizado con diversos instrumentos deberá pararse de forma segura. Para ello se requiere un sistema denominado bloque de parada (Beam Dump en inglés) que absorba la energía del haz y la transfiera a un sumidero de calor. España tiene el compromiso de suministrar este componente y CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) es responsable de dicha tarea. La pieza central del bloque de parada, donde se para el haz de iones, es un cono de cobre con un ángulo de 3.5o, 2.5 m de longitud y 5 mm de espesor. Dicha pieza está refrigerada por agua que fluye en su superficie externa por el canal que se forma entre el cono de cobre y otra pieza concéntrica con éste. Este es el marco en que se desarrolla la presente tesis, cuyo objeto es el diseño del sistema de refrigeración del bloque de parada del LIPAc. El diseño se ha realizado utilizando un modelo simplificado unidimensional. Se han obtenido los parámetros del agua (presión, caudal, pérdida de carga) y la geometría requerida en el canal de refrigeración (anchura, rugosidad) para garantizar la correcta refrigeración del bloque de parada. Se ha comprobado que el diseño permite variaciones del haz respecto a la situación nominal siendo el flujo crítico calorífico al menos 2 veces superior al nominal. Se han realizado asimismo simulaciones fluidodinámicas 3D con ANSYS-CFX en aquellas zonas del canal de refrigeración que lo requieren. El bloque de parada se activará como consecuencia de la interacción del haz de partículas lo que impide cualquier cambio o reparación una vez comenzada la operación del acelerador. Por ello el diseño ha de ser muy robusto y todas las hipótesis utilizadas en la realización de éste deben ser cuidadosamente comprobadas. Gran parte del esfuerzo de la tesis se centra en la estimación del coeficiente de transferencia de calor que es determinante en los resultados obtenidos, y que se emplea además como condición de contorno en los cálculos mecánicos. Para ello por un lado se han buscado correlaciones cuyo rango de aplicabilidad sea adecuado para las condiciones del bloque de parada (canal anular, diferencias de temperatura agua-pared de decenas de grados). En un segundo paso se han comparado los coeficientes de película obtenidos a partir de la correlación seleccionada (Petukhov-Gnielinski) con los que se deducen de simulaciones fluidodinámicas, obteniendo resultados satisfactorios. Por último se ha realizado una validación experimental utilizando un prototipo y un circuito hidráulico que proporciona un flujo de agua con los parámetros requeridos en el bloque de parada. Tras varios intentos y mejoras en el experimento se han obtenido los coeficientes de película para distintos caudales y potencias de calentamiento. Teniendo en cuenta la incertidumbre de las medidas, los valores experimentales concuerdan razonablemente bien (en el rango de 15%) con los deducidos de las correlaciones. Por motivos radiológicos es necesario controlar la calidad del agua de refrigeración y minimizar la corrosión del cobre. Tras un estudio bibliográfico se identificaron los parámetros del agua más adecuados (conductividad, pH y concentración de oxígeno disuelto). Como parte de la tesis se ha realizado asimismo un estudio de la corrosión del circuito de refrigeración del bloque de parada con el doble fin de determinar si puede poner en riesgo la integridad del componente, y de obtener una estimación de la velocidad de corrosión para dimensionar el sistema de purificación del agua. Se ha utilizado el código TRACT (TRansport and ACTivation code) adaptándalo al caso del bloque de parada, para lo cual se trabajó con el responsable (Panos Karditsas) del código en Culham (UKAEA). Los resultados confirman que la corrosión del cobre en las condiciones seleccionadas no supone un problema. La Tesis se encuentra estructurada de la siguiente manera: En el primer capítulo se realiza una introducción de los proyectos IFMIF y LIPAc dentro de los cuales se enmarca esta Tesis. Además se describe el bloque de parada, siendo el diseño del sistema de rerigeración de éste el principal objetivo de la Tesis. En el segundo y tercer capítulo se realiza un resumen de la base teórica así como de las diferentes herramientas empleadas en el diseño del sistema de refrigeración. El capítulo cuarto presenta los resultados del relativos al sistema de refrigeración. Tanto los obtenidos del estudio unidimensional, como los obtenidos de las simulaciones fluidodinámicas 3D mediante el empleo del código ANSYS-CFX. En el quinto capítulo se presentan los resultados referentes al análisis de corrosión del circuito de refrigeración del bloque de parada. El capítulo seis se centra en la descripción del montaje experimental para la obtención de los valores de pérdida de carga y coeficiente de transferencia del calor. Asimismo se presentan los resultados obtenidos en dichos experimentos. Finalmente encontramos un capítulo de apéndices en el que se describen una serie de experimentos llevados a cabo como pasos intermedios en la obtención del resultado experimental del coeficiente de película. También se presenta el código informático empleado para el análisis unidimensional del sistema de refrigeración del bloque de parada llamado CHICA (Cooling and Heating Interaction and Corrosion Analysis). ABSTRACT In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with an angle of 3.5o, 2.5 m long and 5 mm width. This part is cooled by water flowing on its external surface through the channel formed between the copper cone and a concentric piece with the latter. The thesis is developed in this realm, and its objective is designing the LIPAc beam dump cooling system. The design has been performed employing a simplified one dimensional model. The water parameters (pressure, flow, pressure loss) and the required annular channel geometry (width, rugoisty) have been obtained guaranteeing the correct cooling of the beam dump. It has been checked that the cooling design allows variations of the the beam with respect to the nominal position, being the CHF (Critical Heat Flux) at least twice times higher than the nominal deposited heat flux. 3D fluid dynamic simulations employing ANSYS-CFX code in the beam dump cooling channel sections which require a more thorough study have also been performed. The beam dump will activateasaconsequenceofthe deuteron beam interaction, making impossible any change or maintenance task once the accelerator operation has started. Hence the design has to be very robust and all the hypotheses employed in the design mustbecarefully checked. Most of the work in the thesis is concentrated in estimating the heat transfer coefficient which is decisive in the obtained results, and is also employed as boundary condition in the mechanical analysis. For such task, correlations which applicability range is the adequate for the beam dump conditions (annular channel, water-surface temperature differences of tens of degrees) have been compiled. In a second step the heat transfer coefficients obtained from the selected correlation (Petukhov- Gnielinski) have been compared with the ones deduced from the 3D fluid dynamic simulations, obtaining satisfactory results. Finally an experimental validation has been performed employing a prototype and a hydraulic circuit that supplies a flow with the requested parameters in the beam dump. After several tries and improvements in the experiment, the heat transfer coefficients for different flows and heating powers have been obtained. Considering the uncertainty in the measurements the experimental values agree reasonably well (in the order of 15%) with the ones obtained from the correlations. Due to radiological reasons the quality of the cooling water must be controlled, hence minimizing the copper corrosion. After performing a bibligraphic study the most adequate water parameters were identified (conductivity, pH and dissolved oxygen concentration). As part of this thesis a corrosion study of the beam dump cooling circuit has been performed with the double aim of determining if corrosion can pose a risk for the copper beam dump , and obtaining an estimation of the corrosion velocitytodimension the water purification system. TRACT code(TRansport and ACTivation) has been employed for such study adapting the code for the beam dump case. For such study a collaboration with the code responsible (Panos Karditsas) at Culham (UKAEA) was established. The work developed in this thesis has supposed the publication of three articles in JCR journals (”Journal of Nuclear Materials” y ”Fusion Engineering and Design”), as well as presentations in more than four conferences and relevant meetings.
Resumo:
The study brings new insights on the hydrogen assisted stress corrosion on damage tolerance of a high-strength duplex stainless steel wire which concerns its potential use as active reinforcement for concrete prestressing. The adopted procedure was to experimentally state the effect of hydrogen on the damage tolerance of cylindrical smooth and precracked wire specimens exposed to stress corrosion cracking using the aggressive medium of the standard test developed by FIP (International Prestressing Federation). Stress corrosion testing, mechanical fracture tests and scanning electron microscopy analysis allowed the damage assessment, and explain the synergy between mechanical loading and environment action on the failure sequence of the wire. In presence of previous damage, hydrogen affects the wire behavior in a qualitative sense, consistently to the fracture anisotropy attributable to cold drawing, but it does not produce quantitative changes since the steel fully preserves its damage tolerance.
Resumo:
Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view)are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized.
Resumo:
Los recubrimientos lubricantes sólidos son requeridos para reducir la fricción y prevenir el desgaste en componentes que operan a altas temperaturas o en vacío (vehículos espaciales, industria química, motores diésel, turbinas aeronáuticas y de generación de energía…). Los lubricantes líquidos pierden sus características cuando las condiciones de presión, temperatura o ambientales son severas (oxidación, inestabilidad térmica, volatilidad,…), por ejemplo los aceites minerales convencionales se descomponen a temperaturas próximas a 200 ºC. Por tanto, la única manera de poder conseguir una adecuada lubricación a temperaturas extremas es por medio de sólidos, que cada vez más, se aplican en forma de recubrimientos. Estos recubrimientos podrían ser empleados en componentes de vehículos espaciales reutilizables, donde se pueden alcanzar, en la reentrada en la atmósfera, temperaturas de 700 ºC (bisagras, rodamientos, articulaciones y zonas de sellado en las superficies de control, y rodamientos de las turbobombas y las cajas de engranajes). Dichos recubrimientos también deberían ser capaces de proporcionar una lubricación efectiva a bajas temperaturas para las operaciones en tierra, para las operaciones de arranque en frío, incluso en el espacio. El conjunto de requisitos que tendrían que satisfacer las capas tribológicas relacionadas con estas condiciones extremas es muy diverso, lo que hace que el concepto de capas tipo composite (aquéllas constituidas por varios componentes) sea, en principio, muy adecuado para estas aplicaciones. Recubrimientos composite proyectados térmicamente constituidos por una matriz dura y conteniendo lubricantes sólidos pueden ser una buena solución desde el punto de vista tribológico. El “Lewis Research Centre” de la NASA ha estado desarrollando recubrimientos autolubricantes tipo composite, constituidos por la combinación de materiales duros como el carburo de cromo, junto con lubricantes sólidos como plata o la eutéctica de fluoruros de calcio y bario, en una matriz de NiCr, para su uso en aplicaciones terrestres a alta temperatura. Estos recubrimientos han sido aplicados mediante proyección térmica, siendo denominados como series PS100, PS200, PS300 y PS400, reduciendo de forma significativa el coeficiente de fricción y mejorando la resistencia al desgaste en un amplio margen de temperaturas. Otra nueva familia de materiales con comportamiento tribológico prometedor son las aleaciones cuasicristalinas (QC). Presentan características muy atractivas: alta dureza, baja fricción, alto límite elástico de compresión... Son muy frágiles como materiales másicos, por lo que se intentan aplicar en forma de recubrimientos. Se pueden depositar mediante proyección térmica. Algunos de estos materiales cuasicristalinos, como AlCoFeCr, poseen coeficientes de dilatación próximos al de los materiales metálicos, alta estabilidad térmica, baja conductividad térmica y una elevada resistencia a la oxidación y a la corrosión en caliente. En esta tesis se han desarrollado recubrimientos tipo composite conteniendo cuasicristales como componente antidesgaste, NiCr como componente tenaz, y Ag y la eutéctica de BaF2-CaF2, como lubricantes sólidos. Estos recubrimientos han sido depositados con diferentes composiciones (denominadas TH100, TH103, TH200, TH400, TH600…) mediante distintos procesos de proyección térmica: plasma en aire (PS), plasma en baja presión (LPPS) y combustión a alta velocidad (HVOF). Los recubrimientos se han generado sobre el sustrato X-750, una superaleación base níquel, endurecible por precipitación, con muy buena resistencia mecánica y a la oxidación hasta temperaturas de 870 ºC y, además, es empleada en aplicaciones aeroespaciales e industriales. Los recubrimientos han sido caracterizados microestructuralmente en INTA (Instituto Nacional de Técnica Aeroespacial), mediante SEM-EDS (Scanning Electronic Microscopy-Energy Dispersive Spectroscopy) y XRD (X-Ray Diffraction), y tribológicamente mediante medidas de microdureza y ensayos en tribómetro POD (Pin On Disc) para determinar los coeficientes de fricción y de desgaste. Los recubrimientos han sido ensayados tribológicamente a alta temperatura en INTA y en vacío en AMTTARC (Aerospace and Space Materials Technology Testhouse – Austrian Research Centres), en Seibersdorf (Austria). Se ha estudiado la influencia de la carga normal aplicada, la velocidad lineal y el material del pin. De entre las diferentes series de recubrimientos cuasicristalinos tipo composite desarrolladas, dos de ellas, TH100 y TH103 han presentado una excelente calidad microestructural (baja porosidad, distribución uniforme de fases…) y se han mostrado como excelentes recubrimientos antidesgaste. Sin embargo, estas capas presentan un pobre comportamiento como autolubricantes a temperatura ambiente, aunque mejoran mucho a alta temperatura o en vacío. Los resultados del trabajo presentado en esta tesis han proporcionado nuevo conocimiento respecto al comportamiento tribológico de recubrimientos autolubricantes cuasicristalinos tipo composite depositados por proyección térmica. Sin embargo, dichos resultados, aunque son muy prometedores, no han puesto de manifiesto el adecuado comportamiento autolubricante que se pretendía y, además, como ocurre en cualquier trabajo de investigación, durante el desarrollo del mismo siempre aparecen nuevas dudas por resolver. Se proponen nuevas líneas de trabajo futuro que complementen los resultados obtenidos y que puedan encaminar hacia la obtención de un recubrimiento que mejore su comportamiento autolubricante. ABSTRACT Solid lubricant coatings are required to reduce friction and prevent wear in components that operate at high temperatures or under vacuum (space vehicles, chemical industry, diesel engines, power generation turbines and aeronautical turbines, for instance). In these cases neither greases nor liquid lubricants can be employed and the only practicable approach to lubrication in such conditions is by means of solids. These are increasingly applied in the form of coatings which should exhibit low shear strength, whilst maintaining their chemical stability at extremes temperatures and in the space environment. In the space field, these coatings would be employed in re-usable space plane applications, such as elevon hinges, where temperatures of 700 ºC are reached during re-entry into the Earth’s atmosphere. These coatings should also be capable of providing effective lubrication at lower temperatures since “cold start” operation may be necessary, even in the space environment. The diverse and sometimes conflictive requirements in high temperature and space-related tribological coatings make the concept of composite coatings highly suitable for these applications. Thermal-sprayed composites containing solid lubricants in a hard matrix perform well tribologically. NASA‘s Lewis Research Centre had developed self-lubricating composite coatings for terrestrial use, comprising hard materials like chromium carbide as well as solid lubricant additives such as silver and BaF2-CaF2 eutectic on a Ni-Cr matrix. These coatings series, named PS100, PS200, PS300 and PS400, are applied by thermal spray and significantly reduce friction coefficients, improving wear resistance over a wide temperature range. Quasicrystalline alloys (QC) constitute a new family of materials with promising tribological behaviour. Some QC materials exhibit a combination of adequate antifriction properties: low friction coefficient, high hardness and high yield strength under compression, and can be easily produced as coatings on top of metallic and non-metallic materials. Among these QC alloys, AlCoFeCr has high hardness (700 HV0.1), a thermal expansion coefficient close to that of metals, high thermal stability, low thermal conductivity and good oxidation and hot corrosion resistance. However most QC materials have the disadvantage of being very brittle. In order to take advantage of the excellent tribological properties of QCs, thick composite lubricant coatings were prepared containing them as the hard phase for wear resistance, Ag and BaF2-CaF2 eutectic as lubricating materials and NiCr as the tough component. These coatings were deposited in different composition mixtures (named TH100, TH103, TH200, TH400, TH600…) by different thermal spray processes: air plasma spray (PS), low pressure plasma spray (LPPS) and high velocity oxy-fuel (HVOF), on X-750 substrates. X-750 is an age-hardenable nickel-base superalloy with very good strength and a good resistance to oxidising combustion gas environments at temperatures up to about 870 ºC and it is widely used in aerospace and industrial applications. Coatings have been characterized microstructurally, at INTA (National Institute for Aerospace Technology), by means of SEM-EDS (Scanning Electronic Microscopy- Energy Dispersive Spectroscopy) and XRD (X-Ray Diffraction), and tribologically by microhardness measurements and pin-on-disc testing to determine friction coefficients as well as wear resistance. The coatings were tested tribologically at high temperature at INTA and under vacuum at AMTT-ARC (Aerospace and Space Materials Technology Testhouse – Austrian Research Centres), in Seibersdorf (Austria). Different loads, linear speeds and pin materials were studied. TH100 and TH103 QC alloy matrix composite coatings were deposited by HVOF with excellent microstructural quality (low porosity, uniform phase distribution) and showed to be excellent wear resistant coatings. However these QC alloy matrix composite coatings are poor as a self-lubricant at room temperature but much better at high temperature or in vacuum. The results from the work performed within the scope of this thesis have provided new knowledge concerning the tribological behavior of self-lubricating quasicrystalline composite coatings deposited by thermal spraying. Although these results are very promising, they have not shown an adequate self-lubricating behavior as was intended, and also, as in any research, the results have in addition raised new questions. Future work is suggested to complement the results of this thesis in order to improve the selflubricating behaviour of the coatings.