1 resultado para Correlação cruzada
em Universidad Politécnica de Madrid
Resumo:
Parte de la investigación biomédica actual se encuentra centrada en el análisis de datos heterogéneos. Estos datos pueden tener distinto origen, estructura, y semántica. Gran cantidad de datos de interés para los investigadores se encuentran en bases de datos públicas, que recogen información de distintas fuentes y la ponen a disposición de la comunidad de forma gratuita. Para homogeneizar estas fuentes de datos públicas con otras de origen privado, existen diversas herramientas y técnicas que permiten automatizar los procesos de homogeneización de datos heterogéneos. El Grupo de Informática Biomédica (GIB) [1] de la Universidad Politécnica de Madrid colabora en el proyecto europeo P-medicine [2], cuya finalidad reside en el desarrollo de una infraestructura que facilite la evolución de los procedimientos médicos actuales hacia la medicina personalizada. Una de las tareas enmarcadas en el proyecto P-medicine que tiene asignado el grupo consiste en elaborar herramientas que ayuden a usuarios en el proceso de integración de datos contenidos en fuentes de información heterogéneas. Algunas de estas fuentes de información son bases de datos públicas de ámbito biomédico contenidas en la plataforma NCBI [3] (National Center for Biotechnology Information). Una de las herramientas que el grupo desarrolla para integrar fuentes de datos es Ontology Annotator. En una de sus fases, la labor del usuario consiste en recuperar información de una base de datos pública y seleccionar de forma manual los resultados relevantes. Para automatizar el proceso de búsqueda y selección de resultados relevantes, por un lado existe un gran interés en conseguir generar consultas que guíen hacia resultados lo más precisos y exactos como sea posible, por otro lado, existe un gran interés en extraer información relevante de elevadas cantidades de documentos, lo cual requiere de sistemas que analicen y ponderen los datos que caracterizan a los mismos. En el campo informático de la inteligencia artificial, dentro de la rama de la recuperación de la información, existen diversos estudios acerca de la expansión de consultas a partir de retroalimentación relevante que podrían ser de gran utilidad para dar solución a la cuestión. Estos estudios se centran en técnicas para reformular o expandir la consulta inicial utilizando como realimentación los resultados que en una primera instancia fueron relevantes para el usuario, de forma que el nuevo conjunto de resultados tenga mayor proximidad con los que el usuario realmente desea. El objetivo de este trabajo de fin de grado consiste en el estudio, implementación y experimentación de métodos que automaticen el proceso de extracción de información trascendente de documentos, utilizándola para expandir o reformular consultas. De esta forma se pretende mejorar la precisión y el ranking de los resultados asociados. Dichos métodos serán integrados en la herramienta Ontology Annotator y enfocados a la fuente de datos de PubMed [4].---ABSTRACT---Part of the current biomedical research is focused on the analysis of heterogeneous data. These data may have different origin, structure and semantics. A big quantity of interesting data is contained in public databases which gather information from different sources and make it open and free to be used by the community. In order to homogenize thise sources of public data with others which origin is private, there are some tools and techniques that allow automating the processes of integration heterogeneous data. The biomedical informatics group of the Universidad Politécnica de Madrid cooperates with the European project P-medicine which main purpose is to create an infrastructure and models to facilitate the transition from current medical practice to personalized medicine. One of the tasks of the project that the group is in charge of consists on the development of tools that will help users in the process of integrating data from diverse sources. Some of the sources are biomedical public data bases from the NCBI platform (National Center for Biotechnology Information). One of the tools in which the group is currently working on for the integration of data sources is called the Ontology Annotator. In this tool there is a phase in which the user has to retrieve information from a public data base and select the relevant data contained in it manually. For automating the process of searching and selecting data on the one hand, there is an interest in automatically generating queries that guide towards the more precise results as possible. On the other hand, there is an interest on retrieve relevant information from large quantities of documents. The solution requires systems that analyze and weigh the data allowing the localization of the relevant items. In the computer science field of the artificial intelligence, in the branch of information retrieval there are diverse studies about the query expansion from relevance feedback that could be used to solve the problem. The main purpose of this studies is to obtain a set of results that is the closer as possible to the information that the user really wants to retrieve. In order to reach this purpose different techniques are used to reformulate or expand the initial query using a feedback the results that where relevant for the user, with this method, the new set of results will have more proximity with the ones that the user really desires. The goal of this final dissertation project consists on the study, implementation and experimentation of methods that automate the process of extraction of relevant information from documents using this information to expand queries. This way, the precision and the ranking of the results associated will be improved. These methods will be integrated in the Ontology Annotator tool and will focus on the PubMed data source.