2 resultados para Corneal biomechanical properties
em Universidad Politécnica de Madrid
Resumo:
Rotator cuff tears of the shoulder are a common cause of pain and disability. Although surgery is frequently beneficial, re-tearing of the tendons is likely to re-occur. In many cases even if the reparation is successful it will still generate discomfort, problems with mobility, as well as a sharp pain. This project is funded in the cooperation with the Hospital Clinico San Carlos de Madrid. The purpose of this work is to analyze the effect of the surgical repair and the application of different therapies, including mesenchymal stem cell therapy on the biomechanical properties (strength and stiffness) of the repaired tendon. An animal model of rotator cuff tendon reparations has been developed on laboratory rats.To obtain the mechanical response of the healthy and repaired tendons, it was necessary to develop an experimental set up to reproduce the in-vivo working conditions of the tendons (37 ºC, immersed in physiological serum), and especially the load transfer. The biomechanical properties (maximum load and stiffness) have been measured in healthy and repaired tendons. A total of 70 rats are used in this particular study. It has been found that the repaired tendon is stronger than the original on. However, the repaired tendons demonstrate less flexibility than the healthy (original) ones prior to the damage
Resumo:
Neuronal growth is a complex process involving many intra- and extracellular mechanisms which are collaborating conjointly to participate to the development of the nervous system. More particularly, the early neocortical development involves the creation of a multilayered structure constituted by neuronal growth (driven by axonal or dendritic guidance cues) as well as cell migration. The underlying mechanisms of such structural lamination not only implies important biochemical changes at the intracellular level through axonal microtubule (de)polymerization and growth cone advance, but also through the directly dependent stress/stretch coupling mechanisms driving them. Efforts have recently focused on modeling approaches aimed at accounting for the effect of mechanical tension or compression on the axonal growth and subsequent soma migration. However, the reciprocal influence of the biochemical structural evolution on the mechanical properties has been mostly disregarded. We thus propose a new model aimed at providing the spatially dependent mechanical properties of the axon during its growth. Our in-house finite difference solver Neurite is used to describe the guanosine triphosphate (GTP) transport through the axon, its dephosphorylation in guanosine diphosphate (GDP), and thus the microtubules polymerization. The model is calibrated against experimental results and the tensile and bending mechanical stiffnesses are ultimately inferred from the spatially dependent microtubule occupancy. Such additional information is believed to be of drastic relevance in the growth cone vicinity, where biomechanical mechanisms are driving axonal growth and pathfinding. More specifically, the confirmation of a lower stiffness in the distal axon ultimately participates in explaining the controversy associated to the tensile role of the growth cone.