14 resultados para Coproducts in frames
em Universidad Politécnica de Madrid
Resumo:
Damage models based on the Continuum Damage Mechanics (CDM) include explicitly the coupling between damage and mechanical behavior and, therefore, are consistent with the definition of damage as a phenomenon with mechanical consequences. However, this kind of models is characterized by their complexity. Using the concept of lumped models, possible simplifications of the coupled models have been proposed in the literature to adapt them to the study of beams and frames. On the other hand, in most of these coupled models damage is associated only with the damage energy release rate which is shown to be the elastic strain energy. According to this, damage is a function of the maximum amplitude of cyclic deformation but does not depend on the number of cycles. Therefore, low cycle effects are not taking into account. From the simplified model proposed by Flórez-López, it is the purpose of this paper to present a formulation that allows to take into account the degradation produced not only by the peak values but also by the cumulative effects such as the low cycle fatigue. For it, the classical damage dissipative potential based on the concept of damage energy release rate is modified using a fatigue function in order to include cumulative effects. The fatigue function is determined through parameters such as the cumulative rotation and the total rotation and the number of cycles to failure. Those parameters can be measured or identified physically through the haracteristics of the RC. So the main advantage of the proposed model is the possibility of simulating the low cycle fatigue behavior without introducing parameters with no suitable physical meaning. The good performance of the proposed model is shown through a comparison between numerical and test results under cycling loading.
Resumo:
Many studies have been developed to analyze the structural seismic behavior through the damage index concept. The evaluation of this index has been employed to quantify the safety of new and existing structures and, also, to establish a framework for seismic retrofitting decision making of structures. Most proposed models are based in a posterthquake evaluation in such a way they uncouple the structural response from the damage evaluation. In this paper, a generalization of the model by Flórez-López (1995) is proposed. The formulation employs irreversible thermodynamics and internal state variable theory applied to the study of beams and frames and it allows and explicit coupling between the degradation and the structural mechanical behavior. A damage index es defined in order to model elastoplasticity coupled with damage and fatigue damage.
Resumo:
This paper concerns the characterization as frames of some sequences in U-invariant spaces of a separable Hilbert space H where U denotes an unitary operator defined on H ; besides, the dual frames having the same form are also found. This general setting includes, in particular, shift-invariant or modulation-invariant subspaces in L2 (R), where these frames are intimately related to the generalized sampling problem. We also deal with some related perturbation problems. In so doing, we need that the unitary operator U belongs to a continuous group of unitary operators.
Resumo:
In the present work a seismic retrofitting technique is proposed for masonry infilled reinforced concrete frames based on the replacement of infill panels by K-bracing with vertical shear link. The performance of this technique is evaluated through experimental tests. A simplified numerical model for structural damage evaluation is also formulated according to the notions and principles of continuum damage mechanics. The proposed model is calibrated with the experimental results. The experimental results have shown an excellent energy dissipation capacity with the proposed technique. Likewise, the numerical predictions with the proposed model are in good agreement with experimental results.
Resumo:
To model strength degradation due to low cycle fatigue, at least three different approaches can be considered. One possibility is based on the formulation of a new free energy function and damage energy release rate, as was proposed by Ju(1989). The second approach uses the notion of bounding surface introduced in cyclic plasticity by Dafalias and Popov (1975). From this concept, some models have been proposed to quantify damage in concrete or RC (Suaris et al. 1990). The model proposed by the author to include fatigue effects is based essentially in Marigo (1985) and can be included in this approach.
Resumo:
Respiratory motion is a major source of reduced quality in positron emission tomography (PET). In order to minimize its effects, the use of respiratory synchronized acquisitions, leading to gated frames, has been suggested. Such frames, however, are of low signal-to-noise ratio (SNR) as they contain reduced statistics. Super-resolution (SR) techniques make use of the motion in a sequence of images in order to improve their quality. They aim at enhancing a low-resolution image belonging to a sequence of images representing different views of the same scene. In this work, a maximum a posteriori (MAP) super-resolution algorithm has been implemented and applied to respiratory gated PET images for motion compensation. An edge preserving Huber regularization term was used to ensure convergence. Motion fields were recovered using a B-spline based elastic registration algorithm. The performance of the SR algorithm was evaluated through the use of both simulated and clinical datasets by assessing image SNR, as well as the contrast, position and extent of the different lesions. Results were compared to summing the registered synchronized frames on both simulated and clinical datasets. The super-resolution image had higher SNR (by a factor of over 4 on average) and lesion contrast (by a factor of 2) than the single respiratory synchronized frame using the same reconstruction matrix size. In comparison to the motion corrected or the motion free images a similar SNR was obtained, while improvements of up to 20% in the recovered lesion size and contrast were measured. Finally, the recovered lesion locations on the SR images were systematically closer to the true simulated lesion positions. These observations concerning the SNR, lesion contrast and size were confirmed on two clinical datasets included in the study. In conclusion, the use of SR techniques applied to respiratory motion synchronized images lead to motion compensation combined with improved image SNR and contrast, without any increase in the overall acquisition times.
Resumo:
A large number of reinforced concrete (RC) frame structures built in earthquake-prone areas such as Haiti are vulnerable to strong ground motions. Structures in developing countries need low-cost seismic retrofit solutions to reduce their vulnerability. This paper investigates the feasibility of using masonry infill walls to reduce deformations and damage caused by strong ground motions in brittle and weak RC frames designed only for gravity loads. A numerical experiment was conducted in which several idealized prototypes representing RC frame structures of school buildings damaged during the Port-au-Prince earthquake (Haiti, 2010) were strengthened by adding elements representing masonry infill walls arranged in different configurations. Each configuration was characterized by the ratio Rm of the area of walls in the direction of the ground motion (in plan) installed in each story to the total floor area. The numerical representations of these idealized RC frame structures with different values of Rm were (hypothetically) subjected to three major earthquakes with peak ground accelerations of approximately 0.5g. The results of the non-linear dynamic response analyses were summarized in tentative relationships between Rm and four parameters commonly used to characterize the seismic response of structures: interstory drift, Park and Ang indexes of damage, and total amount of energy dissipated by the main frame. It was found that Rm=4% is a reasonable minimum design value for seismic retrofitting purposes in cases in which available resources are not sufficient to afford conventional retrofit measures.
Resumo:
The effect of infill walls on the behaviour of frames is widely recognized, and, for several decades now, has been the subject of numerous experimental investigations. However, the analytical modeling of infilled panels and frames under in-plane loading is difficult and generally unreliable. From the point of view of the simulation technique the models may be divided into micromodels and simplified (or macro-) models. Based on the equivalent strut approach (simplified model), in this paper a damage model is proposed for the characterization of masonry walls submitted to lateral cyclic loads. The model, developed along the lines of the Continuum Damage Mechanics, have the advantages of including explicitly the coupling between damage and mechanical behaviour and so is consistent with the definition of damage as a phenomenon with mechanical consequences.
Resumo:
A significant number of short-to-mid height RC buildings with wide beams have been constructed in areas of moderate seismicity of Spain, mainly for housing and administrative use. The buildings have a framed structure with one-way slabs; the wide beams constitute the distinctive characteristic, their depth being equal to that of the rest of the slab, thus providing a flat lower surface, convenient for construction and the layout of facilities. Seismic behavior in the direction of the wide beams appears to be deficient because of: (i) low lateral strength, mainly because of the small effective depth of the beams, (ii) inherent low ductility of the wide beams, generated by high amount of reinforcement, (iii) the big strut compressive forces developed inside the column-beam connections due to the low height of the beams, and (iv) the fact that the wide beams are wider than the columns, meaning that the contribution of the outer zones to the resistance of the beam-column joints is unreliable because there is no torsion reinforcement. In the orthogonal direction, the behavior is worse since the only members of the slabs that contribute to the lateral resistance are the joists and the façade beams. Moreover, these buildings were designed with codes that did not include ductility requirements and required only a low lateral resistance; indeed, in many cases, seismic action was not considered at all. Consequently, the seismic capacity of these structures is not reliable. The objective of this research is to assess numerically this capability, whereas further research will aim to propose retrofit strategies. The research approach consists of: (i) selecting a number of 3-story and 6-story buildings that represent the vast majority of the existing ones and (ii) evaluating their vulnerability through three types of analyses, namely: code-type, push-over and nonlinear dynamic analysis. Given the low lateral resistance of the main frames, the cooperation of the masonry infill walls is accounted for; for each representative building, three wall densities are considered. The results of the analyses show that the buildings in question exhibit inadequate seismic behavior in most of the examined situations. In general, the relative performance is less deficient for Target Drift CP (Collapse Prevention) than for IO (Immediate Occupancy). Since these buildings are selected to be representative of the vast majority of buildings with wide beams that were constructed in Spain without accounting for any seismic consideration, our conclusions can be extrapolated to a broader scenario.
Resumo:
Neuroimage experiments have been essential for identifying active brain networks. During cognitive tasks as in, e.g., aesthetic appreciation, such networks include regions that belong to the default mode network (DMN). Theoretically, DMN activity should be interrupted during cognitive tasks demanding attention, as is the case for aesthetic appreciation. Analyzing the functional connectivity dynamics along three temporal windows and two conditions, beautiful and not beautiful stimuli, here we report experimental support for the hypothesis that aesthetic appreciation relies on the activation of two different networks, an initial aesthetic network and a delayed aesthetic network, engaged within distinct time frames. Activation of the DMN might correspond mainly to the delayed aesthetic network. We discuss adaptive and evolutionary explanations for the relationships existing between the DMN and aesthetic networks and offer unique inputs to debates on the mind/brain interaction.
Resumo:
Automatic systems based on speech signal analysis for the early dete ction of obstructive sleep apnea (OSA) have achieved fairly high performance rates in recent years. However, a satisfactory explanation of these results has not been available. This presentation aims at explaining via an examination of the long-term spectra of OSA patients and normal control speakers these systems’ ability to discover OSA speakers on the base of all-purpose cepstral coefficients. An in terpretation of the long- term spectra in terms of the underlying tract settings suggests that the speech of OSA patients is characterized by a pharyngeal narrowing that may be captured by acoustic cues of the spectral contour of windowed speech frames. A novel interpretation of long-term spectra in terms of the first principal component of the temporal sequence of short-term amplitude-spectra is also discussed.
Resumo:
Reciprocal frame structures, formed by a set of self-supported elements in a closed circuit, have long been used since antiquity to cover large spans with small elements. The roof structure of the Euskalduna conference centre and concert hall extension in Bilbao, covering an irregu- lar geometry of 3000 m2 with a maximum span of 45 m, presented an interesting opportunity to revisit the concept and to apply these classical systems. Furthermore, its analysis and develop- ment led to an interesting discussion on reciprocal frames. They showed great sensitivity of these systems to the local modification of a particular element, establishment of irregular load paths, mobilisation of almost the entire sys- tem when locally applying a punctual load and, finally, its large deformability. Besides, reciprocal frames present particular construction complexities and possibilities due to the moderate length of the structural elements, the predominance of shear-only connec- tions and the necessity of the entire system to be completely erected to guarantee its stability. Euskalduna extension, completed in 2012, is one of the largest and a very par- ticular case of irregular reciprocal frame structures built in the world. It shows the formal possibilities and potentiality of reciprocal frames to respond to free and irregular geometries.
Resumo:
The book represents a very interesting example of the possibility to combine in a single publication basic theory of structures and quite advanced topics on the same subject. The author fulfills this objective in a reasonable size book, less than 400 pages divided into 15 chapters averaging 20 pages each plus 9 short appendices. A diskette is also included in the book. This diskette contains training as well practical executable programs on different aspects of structural analysis, such as cross-sections properties,general-purpose computer programs for the static, dynamic and stability analysis of simple bar structures, etc. The book figures are didactic and have been carefully drawn.
Resumo:
Esta tesis se desarrolla dentro del marco de las comunicaciones satelitales en el innovador campo de los pequeños satélites también llamados nanosatélites o cubesats, llamados así por su forma cubica. Estos nanosatélites se caracterizan por su bajo costo debido a que usan componentes comerciales llamados COTS (commercial off-the-shelf) y su pequeño tamaño como los Cubesats 1U (10cm*10 cm*10 cm) con masa aproximada a 1 kg. Este trabajo de tesis tiene como base una iniciativa propuesta por el autor de la tesis para poner en órbita el primer satélite peruano en mi país llamado chasqui I, actualmente puesto en órbita desde la Estación Espacial Internacional. La experiencia de este trabajo de investigación me llevo a proponer una constelación de pequeños satélites llamada Waposat para dar servicio de monitoreo de sensores de calidad de agua a nivel global, escenario que es usado en esta tesis. Es ente entorno y dadas las características limitadas de los pequeños satélites, tanto en potencia como en velocidad de datos, es que propongo investigar una nueva arquitectura de comunicaciones que permita resolver en forma óptima la problemática planteada por los nanosatélites en órbita LEO debido a su carácter disruptivo en sus comunicaciones poniendo énfasis en las capas de enlace y aplicación. Esta tesis presenta y evalúa una nueva arquitectura de comunicaciones para proveer servicio a una red de sensores terrestres usando una solución basada en DTN (Delay/Disruption Tolerant Networking) para comunicaciones espaciales. Adicionalmente, propongo un nuevo protocolo de acceso múltiple que usa una extensión del protocolo ALOHA no ranurado, el cual toma en cuenta la prioridad del trafico del Gateway (ALOHAGP) con un mecanismo de contienda adaptativo. Utiliza la realimentación del satélite para implementar el control de la congestión y adapta dinámicamente el rendimiento efectivo del canal de una manera óptima. Asumimos un modelo de población de sensores finito y una condición de tráfico saturado en el que cada sensor tiene siempre tramas que transmitir. El desempeño de la red se evaluó en términos de rendimiento efectivo, retardo y la equidad del sistema. Además, se ha definido una capa de convergencia DTN (ALOHAGP-CL) como un subconjunto del estándar TCP-CL (Transmission Control Protocol-Convergency Layer). Esta tesis muestra que ALOHAGP/CL soporta adecuadamente el escenario DTN propuesto, sobre todo cuando se utiliza la fragmentación reactiva. Finalmente, esta tesis investiga una transferencia óptima de mensajes DTN (Bundles) utilizando estrategias de fragmentación proactivas para dar servicio a una red de sensores terrestres utilizando un enlace de comunicaciones satelitales que utiliza el mecanismo de acceso múltiple con prioridad en el tráfico de enlace descendente (ALOHAGP). El rendimiento efectivo ha sido optimizado mediante la adaptación de los parámetros del protocolo como una función del número actual de los sensores activos recibidos desde el satélite. También, actualmente no existe un método para advertir o negociar el tamaño máximo de un “bundle” que puede ser aceptado por un agente DTN “bundle” en las comunicaciones por satélite tanto para el almacenamiento y la entrega, por lo que los “bundles” que son demasiado grandes son eliminados o demasiado pequeños son ineficientes. He caracterizado este tipo de escenario obteniendo una distribución de probabilidad de la llegada de tramas al nanosatélite así como una distribución de probabilidad del tiempo de visibilidad del nanosatélite, los cuales proveen una fragmentación proactiva óptima de los DTN “bundles”. He encontrado que el rendimiento efectivo (goodput) de la fragmentación proactiva alcanza un valor ligeramente inferior al de la fragmentación reactiva. Esta contribución permite utilizar la fragmentación activa de forma óptima con todas sus ventajas tales como permitir implantar el modelo de seguridad de DTN y la simplicidad al implementarlo en equipos con muchas limitaciones de CPU y memoria. La implementación de estas contribuciones se han contemplado inicialmente como parte de la carga útil del nanosatélite QBito, que forma parte de la constelación de 50 nanosatélites que se está llevando a cabo dentro del proyecto QB50. ABSTRACT This thesis is developed within the framework of satellite communications in the innovative field of small satellites also known as nanosatellites (<10 kg) or CubeSats, so called from their cubic form. These nanosatellites are characterized by their low cost because they use commercial components called COTS (commercial off-the-shelf), and their small size and mass, such as 1U Cubesats (10cm * 10cm * 10cm) with approximately 1 kg mass. This thesis is based on a proposal made by the author of the thesis to put into orbit the first Peruvian satellite in his country called Chasqui I, which was successfully launched into orbit from the International Space Station in 2014. The experience of this research work led me to propose a constellation of small satellites named Waposat to provide water quality monitoring sensors worldwide, scenario that is used in this thesis. In this scenario and given the limited features of nanosatellites, both power and data rate, I propose to investigate a new communications architecture that allows solving in an optimal manner the problems of nanosatellites in orbit LEO due to the disruptive nature of their communications by putting emphasis on the link and application layers. This thesis presents and evaluates a new communications architecture to provide services to terrestrial sensor networks using a space Delay/Disruption Tolerant Networking (DTN) based solution. In addition, I propose a new multiple access mechanism protocol based on extended unslotted ALOHA that takes into account the priority of gateway traffic, which we call ALOHA multiple access with gateway priority (ALOHAGP) with an adaptive contention mechanism. It uses satellite feedback to implement the congestion control, and to dynamically adapt the channel effective throughput in an optimal way. We assume a finite sensor population model and a saturated traffic condition where every sensor always has frames to transmit. The performance was evaluated in terms of effective throughput, delay and system fairness. In addition, a DTN convergence layer (ALOHAGP-CL) has been defined as a subset of the standard TCP-CL (Transmission Control Protocol-Convergence Layer). This thesis reveals that ALOHAGP/CL adequately supports the proposed DTN scenario, mainly when reactive fragmentation is used. Finally, this thesis investigates an optimal DTN message (bundles) transfer using proactive fragmentation strategies to give service to a ground sensor network using a nanosatellite communications link which uses a multi-access mechanism with priority in downlink traffic (ALOHAGP). The effective throughput has been optimized by adapting the protocol parameters as a function of the current number of active sensors received from satellite. Also, there is currently no method for advertising or negotiating the maximum size of a bundle which can be accepted by a bundle agent in satellite communications for storage and delivery, so that bundles which are too large can be dropped or which are too small are inefficient. We have characterized this kind of scenario obtaining a probability distribution for frame arrivals to nanosatellite and visibility time distribution that provide an optimal proactive fragmentation of DTN bundles. We have found that the proactive effective throughput (goodput) reaches a value slightly lower than reactive fragmentation approach. This contribution allows to use the proactive fragmentation optimally with all its advantages such as the incorporation of the security model of DTN and simplicity in protocol implementation for computers with many CPU and memory limitations. The implementation of these contributions was initially contemplated as part of the payload of the nanosatellite QBito, which is part of the constellation of 50 nanosatellites envisaged under the QB50 project.