3 resultados para Convex Metric Spaces

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is an account of some aspects of the geometry of Kahler affine metrics based on considering them as smooth metric measure spaces and applying the comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a version for Kahler affine metrics of Yau s Schwarz lemma for volume forms. By a theorem of Cheng and Yau, there is a canonical Kahler affine Einstein metric on a proper convex domain, and the Schwarz lemma gives a direct proof of its uniqueness up to homothety. The potential for this metric is a function canonically associated to the cone, characterized by the property that its level sets are hyperbolic affine spheres foliating the cone. It is shown that for an n -dimensional cone, a rescaling of the canonical potential is an n -normal barrier function in the sense of interior point methods for conic programming. It is explained also how to construct from the canonical potential Monge-Ampère metrics of both Riemannian and Lorentzian signatures, and a mean curvature zero conical Lagrangian submanifold of the flat para-Kahler space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we prove that if U is an open subset of a metrizable locally convex space E of infinite dimension, the space H(U) of all holomorphic functions on U, endowed with the Nachbin–Coeuré topology τδ, is not metrizable. Our result can be applied to get that, for all usual topologies, H(U) is metrizable if and only if E has finite dimension. RESUMEN. En este artículo se demuestra que si U es un abierto en un espacio E localmente convexo metrizable de dimensión infinita y H(U) es el espacio de funciones holomorfas en U, entonces la topología de Nachbin-Coeuré en H(U) no es metrizable. Este resultado se utiliza para demostrar que las topologías habituales en H(U) son metrizables si y sólo si E tiene dimensión finita.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An AH (affine hypersurface) structure is a pair comprising a projective equivalence class of torsion-free connections and a conformal structure satisfying a compatibility condition which is automatic in two dimensions. They generalize Weyl structures, and a pair of AH structures is induced on a co-oriented non-degenerate immersed hypersurface in flat affine space. The author has defined for AH structures Einstein equations, which specialize on the one hand to the usual Einstein Weyl equations and, on the other hand, to the equations for affine hyperspheres. Here these equations are solved for Riemannian signature AH structures on compact orientable surfaces, the deformation spaces of solutions are described, and some aspects of the geometry of these structures are related. Every such structure is either Einstein Weyl (in the sense defined for surfaces by Calderbank) or is determined by a pair comprising a conformal structure and a cubic holomorphic differential, and so by a convex flat real projective structure. In the latter case it can be identified with a solution of the Abelian vortex equations on an appropriate power of the canonical bundle. On the cone over a surface of genus at least two carrying an Einstein AH structure there are Monge-Amp`ere metrics of Lorentzian and Riemannian signature and a Riemannian Einstein K"ahler affine metric. A mean curvature zero spacelike immersed Lagrangian submanifold of a para-K"ahler four-manifold with constant para-holomorphic sectional curvature inherits an Einstein AH structure, and this is used to deduce some restrictions on such immersions.