14 resultados para Convection terms

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a combination of numerical methods applied to thermohydrodynamic lubrication problems with cavitation is presented. It should be emphasized the difficulty of the nonlinear mathematical coupled model involving a free boundary problem, but also the simplicity of the algorithms employed to solve it. So, finite element discretizations for the hydrodynamic and thermal equations combined with upwind techniques for the convection terms and duality methods for nonlinear features are proposed. Additionally, a model describing the movement of the shaft is provided. Considering the shaft as a rigid body this model will consist of an ODE system relating acceleration of the center of gravity and external and pressure loads. The numerical experiments of mechanical stability try to clarify the position of the neutral stability curve. Finally, a rotating machine for ship propulsion involving both axial and radial bearings operating with nonconventional lubricants (seawater to avoid environmental pollution) is analyzed by using laminar and turbulent inertial flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the onset depends not only on the Grashof number defined in terms of the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting quite well the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a model equation that mimics convection under rotation in a fluid with temperature- dependent properties (non-Boussinesq (NB)), high Prandtl number and idealized boundary conditions. It is based on a model equation proposed by Segel [1965] by adding rotation terms that lead to a Kuppers-Lortz instability [Kuppers & Lortz, 1969] and can develop into oscillating hexagons. We perform a weakly nonlinear analysis to find out explicitly the coefficients in the amplitude equation as functions of the rotation rate. These equations describe hexagons and os- cillating hexagons quite well, and include the Busse?Heikes (BH) model [Busse & Heikes, 1980] as a particular case. The sideband instabilities as well as short wavelength instabilities of such hexagonal patterns are discussed and the threshold for oscillating hexagons is determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface tension induced convection in a liquid bridge held between two parallel, coaxial, solid disks is considered. The surface tension gradient is produced by a small temperature gradient parallel Co the undisturbed surface. The study is performed by using a mathematical regular perturbation approach based on a small parameter, e, which measures the deviation of the imposed temperature field from its mean value. The first order velocity field is given by a Stokes-type problem (viscous terms are dominant) with relatively simple boundary conditions. The first order temperature field is that imposed from the end disks on a liquid bridge immersed in a non-conductive fluid. Radiative effects are supposed to be negligible. The second order temperature field, which accounts for convective effects, is split into three components, one due to the bulk motion, and the other two to the distortion of the free surface. The relative importance of these components in terms of the heat transfer to or from the end disks is assessed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review recent computational results for hexagon patterns in non- Boussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a vertical axis the transition from hexagons to rolls is replaced by a Hopf bifurcation to whirling hexagons. For weak non-Boussinesq effects they display defect chaos of the type described by the two-dimensional (2D) complex Ginzburg-andau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and localized bursting of the whirling amplitude is found. In this regime the cou- pling of the whirling amplitude to (small) deformations of the hexagon lattice becomes important. For yet stronger non-Boussinesq effects this coupling breaks up the hexagon lattice and strongly disordered states characterized by whirling and lattice defects are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of a liquid layer with an undeformable interface open to the atmo- sphere, subjected to a horizontal temperature gradient, is theoretically analysed. Buoyancy and surface tension forces give rise to a basic flow for any temperature dif- ference applied on the system. Depending on the liquid depth, this basic flow is desta- bilised either by an oscillatory instability, giving rise to the so-called hydrothermal waves, or by a stationary instability leading to corotating rolls. Oscillatory perturba- tions are driven by the basic flow and therefore one must distinguish between convec- tive and absolute thresholds. The instability mechanisms as well as the di¿erent re- gimes observed in experiments are discussed. The calculations are performed for a fluid used in recent experiments, namely silicone oil of 0.65 cSt ðPr 1?4 10Þ. In partic- ular, it is shown that two branches of absolute instability exist, which may be related to the two types of hydrothermal waves observed experimentally

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the stability and dynamics of non-Boussinesq convection in pure gases ?CO2 and SF6? with Prandtl numbers near Pr? 1 and in a H2-Xe mixture with Pr= 0.17. Focusing on the strongly nonlinear regime we employ Galerkin stability analyses and direct numerical simulations of the Navier-Stokes equations. For Pr ? 1 and intermediate non-Boussinesq effects we find reentrance of stable hexagons as the Rayleigh number is increased. For stronger non-Boussinesq effects the usual, transverse side-band instability is superseded by a longitudinal side-band instability. Moreover, the hexagons do not exhibit any amplitude instability to rolls. Seemingly, this result contradicts the experimentally observed transition from hexagons to rolls. We resolve this discrepancy by including the effect of the lateral walls. Non-Boussinesq effects modify the spiral defect chaos observed for larger Rayleigh numbers. For convection in SF6 we find that non-Boussinesq effects strongly increase the number of small, compact convection cells and with it enhance the cellular character of the patterns. In H2-Xe, closer to threshold, we find instead an enhanced tendency toward roll-like structures. In both cases the number of spirals and of targetlike components is reduced. We quantify these effects using recently developed diagnostics of the geometric properties of the patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the observation of spiral patterns in a wide range of physical, chemical, and biological systems, we present an automated approach that aims at characterizing quantitatively spiral-like elements in complex stripelike patterns. The approach provides the location of the spiral tip and the size of the spiral arms in terms of their arc length and their winding number. In addition, it yields the number of pattern components (Betti number of order 1), as well as their size and certain aspects of their shape. We apply the method to spiral defect chaos in thermally driven Rayleigh- Bénard convection and find that the arc length of spirals decreases monotonically with decreasing Prandtl number of the fluid and increasing heating. By contrast, the winding number of the spirals is nonmonotonic in the heating. The distribution function for the number of spirals is significantly narrower than a Poisson distribution. The distribution function for the winding number shows approximately an exponential decay. It depends only weakly on the heating, but strongly on the Prandtl number. Large spirals arise only for larger Prandtl numbers. In this regime the joint distribution for the spiral length and the winding number exhibits a three-peak structure, indicating the dominance of Archimedean spirals of opposite sign and relatively straight sections. For small Prandtl numbers the distribution function reveals a large number of small compact pattern components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While non-Boussinesq hexagonal convection patterns are known to be stable close to threshold (i.e. for Rayleigh numbers R ? Rc ), it has often been assumed that they are always unstable to rolls for slightly higher Rayleigh numbers. Using the incompressible Navier?Stokes equations for parameters corresponding to water as the working fluid, we perform full numerical stability analyses of hexagons in the strongly nonlinear regime ( ? (R ? Rc )/Rc = O(1)). We find ?re-entrant? behaviour of the hexagons, i.e. as is increased they can lose and regain stability. This can occur for values of as low as = 0.2. We identify two factors contributing to the re-entrance: (i) far above threshold there exists a hexagon attractor even in Boussinesq convection as has been shown recently and (ii) the non-Boussinesq effects increase with . Using direct simulations for circular containers we show that the re-entrant hexagons can prevail even for sidewall conditions that favour convection in the form of competing stable rolls. For sufficiently strong non-Boussinesq effects hexagons even become stable over the whole -range considered, 0 6 6 1.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimensionality Reduction (DR) is attracting more attention these days as a result of the increasing need to handle huge amounts of data effectively. DR methods allow the number of initial features to be reduced considerably until a set of them is found that allows the original properties of the data to be kept. However, their use entails an inherent loss of quality that is likely to affect the understanding of the data, in terms of data analysis. This loss of quality could be determinant when selecting a DR method, because of the nature of each method. In this paper, we propose a methodology that allows different DR methods to be analyzed and compared as regards the loss of quality produced by them. This methodology makes use of the concept of preservation of geometry (quality assessment criteria) to assess the loss of quality. Experiments have been carried out by using the most well-known DR algorithms and quality assessment criteria, based on the literature. These experiments have been applied on 12 real-world datasets. Results obtained so far show that it is possible to establish a method to select the most appropriate DR method, in terms of minimum loss of quality. Experiments have also highlighted some interesting relationships between the quality assessment criteria. Finally, the methodology allows the appropriate choice of dimensionality for reducing data to be established, whilst giving rise to a minimum loss of quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study a system of partial differential equations describing the evolution of a population under chemotactic effects with non-local reaction terms. We consider an external application of chemoattractant in the system and study the cases of one and two populations in competition. By introducing global competitive/cooperative factors in terms of the total mass of the populations, weobtain, forarangeofparameters, thatanysolutionwithpositive and bounded initial data converges to a spatially homogeneous state with positive components. The proofs rely on the maximum principle for spatially homogeneous sub- and super-solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid-fueled burners are used in a number of propulsion devices ranging from internal combustion engines to gas turbines. The structure of spray flames is quite complex and involves a wide range of time and spatial scales in both premixed and non-premixed modes (Williams 1965; Luo et al. 2011). A number of spray-combustion regimes can be observed experimentally in canonical scenarios of practical relevance such as counterflow diffusion flames (Li 1997), as sketched in figure 1, and for which different microscalemodelling strategies are needed. In this study, source terms for the conservation equations are calculated for heating, vaporizing and burning sprays in the single-droplet combustion regime. The present analysis provides extended formulation for source terms, which include non-unity Lewis numbers and variable thermal conductivities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present and analyze a subgrid viscosity Lagrange-Galerk in method that combines the subgrid eddy viscosity method proposed in W. Layton, A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comp., 133: 14 7-157, 2002, and a conventional Lagrange-Galerkin method in the framework of P1⊕ cubic bubble finite elements. This results in an efficient and easy to implement stabilized method for convection dominated convection diffusion reaction problems. Numerical experiments support the numerical analysis results and show that the new method is more accurate than the conventional Lagrange-Galerkin one.